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Summary

Applications of ocean acoustic tomography and sea-bed classification using measurements of acoustic

signals emitted from known sources are based on the extraction of specific features of the signal and

their subsequent exploitation by post processing. The extraction of these features is sometimes very

difficult to be done in a reliable way, due to the fact that the measurements are made in the presence

of noise, which in some cases is a severe handicap for the exploitation of the measured signals.

Although several inversion methods have been proposed to by-pass the noise problem, the issue is

open to further research and de-noising strategies are in the process of being studied. In this paper

we focus on a specific inversion method based on the statistical characterization of the acoustic signal

[1] and compare a couple of alternative de-noising procedures in order that the statistical features

of the signal extracted from the noisy measurements could lead to reliable inversions of the critical

parameters of the sea-bed and or the water column. The results presented are based on synthetic

signals produced using typical characteristics of tomograpahic sources and adding noise to a level

appropriate for simulating realistic experiments in a shallow water environment.

PACS no. 43.30.Pc, 43.60.Pt

1. Introduction

Signals used for underwater acoustic applications due
to some specific source are contaminated by noise.
The noise may be of physical origin (natural sources)
or may be due o the electronics of the measuring sys-
tem. The exploitation of the signals for applications
of acoustical oceanography are based on the identi-
fication of signal observables which are independent
of noise, or by applying post-processing techniques to
the raw signals recorded in the ocean environment to
reduce the noise effect. It is obvious that denoising
strategies are largely based on the method to be ap-
plied for the exploitation of the signal and the antic-
ipated applications. In the present work we will refer
to a statistical signal characterization method which
has been shown to be efficient for tomogrpahic and
geoacoustic inversion applications [1], The method has
been used recently with both simulated and real data
and the conclusions from the analysis of the results
of the studie! s showed that the quality of the inver-
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sion results is largely dependent on the noise level of
the signal. In this work we compare two alternative
denoising strategies using simulated data with added
noise. For completeness reasons, Chapter 2 presents
shortly the signal characterization method, Chapter
3 presents our first attempt to reduce noise effects of
the recorded signal, while Chapter 4 presents a new
denoising strategy which, based on the analysis of first
results, shows to be efficient in reducing noise effects.
Some initial results are presented in Chapter 5.

The whole analysis is based on the following nota-
tion :

The noise free signal is x, the noise component is
w and the actual signal is S. This is a determinis-
tic treatment of the problem, the statistical character
of the noise introduced by assuming Gaussian white
noise (AGWN). Thus the signal which is recorded
with N samples is given by

S[n] = x[n] +w[n], n = 1, . . . , N (1)
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2. The statistical characterization

scheme

2.1. Statistical Characterization

The details of the signal characterization based on
the statistical analysis of the section wavelet sub-band
coefficients have been presented in other publications
and will not be repeated in detail here. The interested
reader will find extensive analysis of the method in
previous works of Taroudakis et al. [1, 2, 3]

However, for completeness, the outline of the
method will be presented here. Consider an acous-
tic signal S. According to the method, the signal is
characterized by means of the statistical parameters
of the coefficients resulting from the application of a 1-
D Discrete Wavelet Transform (DWT) to the discrete
signal 〈S, ψa,b〉, where ψa,b is an appropriately chosen
wavelet, with subsequent convolution by a High-Pass
and a Low-Pass filter giving two sets of coefficients
called detailed d1[n;S], and approximate, a1[n;S]. In
our analysis the Daubechies’ (db4) wavelet [4] is used.
By continuing this process using the detailed coeffi-
cients up to the kth level of decomposition the sig-
nal is represented as a first step by the vectors of
coefficients obtained through this multilevel analysis.
The approximate coefficients are kept at the final level
only. It has been shown in [1] that the coefficients of
the wavelet coefficients of a typical underwater sig-
nal emitted from a Gaussian source obey a Symmet-
ric Alpha Stable distribution (SaS) described by its
characteristic function:

Φ(t) = exp(iδt− γα|t|α), (2)

where 0 ≤ α ≤ 2 is the characteristic exponent which
controls the marginal behavior of the tails, −∞ <
δ < +∞ is the local parameter, γ is the dispersion of
the distribution, which determines the spread of the
distribution around the local parameter δ and t is the
value of the coefficient.

In our case δ = 0 and the signal S is eventually
characterized by a vector d of dimensions 2L + 2 as
following:

S ↔ d = (α0, γ0, α1, γ1, . . . , αL, γL), (3)

where L is the total number of levels considered.

2.2. The Kullback Leibler Divergence (KLD)
cost function

The Kullback Leibler Divergence (KLD) which ex-
presses the difference (or distance) DS between two
acoustic signals S1 and S2, when these signals are
characterized by some statistical distribution of se-
lected coefficients [5]. In the case of two signals repre-
sented by the parameters of the SaS distributions of
the wavelet sub-band coefficients as described above,

the KLD is expressed in closed form according to the
following formula:

DS(S1, S2) =
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where Γ(x) is the Gamma function and
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i

, i = 1, 2 , k = 0, . . . , L. (5)

Formula (4) is based on the assumption that the sta-
tistical character of the wavelet coefficients at each
level is independent to that of another level.

3. Keeping the efficient energy part of

the signals

Consider a discrete acoustic signal represented by N
samples and denote them as {S[n]} with n = 1, . . . , N .
Let a, b be integer numbers, with 2 ≤ a < b ≤ N − 1
and A ⊂ {1, 2, . . . , N} be an index set. We denote the
restriction of the signal S into the above set A as

S|A[n] =

{
S[n], if n ∈ A

0, otherwise
(6)

We define a signal partition which consisted of three
sub-signals as:

SL(a) = S|[1,a)∩Z

SC(a, b) = S|[a,b]∩Z (7)

SR(b) = S|(b,N ]∩Z.

The initial signal S could be reconstructed from its
partitioning, using the simple additive relation

S = SL(a) + SC(a, b) + SR(b). (8)

The signals SL(a), SC(a, b) and SR(b) have disjoint
supports, hence the energy norm obey the following
additive law

‖S‖22 = ‖SL(a)‖
2
2 + ‖SC(a, b)‖

2
2 + ‖SR(b)‖

2
2. (9)

Choosing integer numbers a∗, b∗ for any pair ε1, ε2 ∈
(0, 1) with restriction ε1 + ε2 to be also in (0, 1) as

a∗ = sup
a

(
‖SL(a)‖

2
2 ≤

ε1
ε
(1− ε)‖S‖22

)
(10)

b∗ = inf
b

(
‖SR(b)‖

2
2 ≤

ε2
ε
(1− ε)‖S‖22

)
, (11)
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then the central projected part SC(a∗, b∗) has about
100ε percent of the energy of the whole signal, where

ε = ε1 + ε2. (12)

Typical recordings corresponding to signals from
sources utilized in ocean acoustic tomography exper-
iments show concentration of energy around the cen-
tral time of the recording while noise has important
contribution in the whole signal. On the other hand,
when considering the statistical signal characteriza-
tion, the actual signal has no effective energy at the
SL, SR parts of it and therefore the wavelet coeffi-
cients are estimated with narrow SaS distributions
and small dispersion parameters γ. These parameters
exhibit constant behavior to the small signal pertur-
bations which are involved in inversion processes.

In view of the above observations, we studied a
strategy to reduce the noise effect which is based on
the use of the the central parts of signal SC(a

∗, b∗)
for signal characterization and subsequent inversion
procedure. This part will be denoted in the sequel as
"cropped" signal. The parameters a∗ and b∗ are cho-
sen so that the effective energy of the signal is between
90 and 98 % of the total signal energy. It is obvious
that the lower limit corresponds to noisy data, as noise
is present in the whole signal while for noise free data
the upper bound gives a safe limit for the inclusion of
the energy significant part of the signal in the charac-
terization process. The values of epsilons (ε1, ε2) are
proportional to the choice of ε as well as the position
of the effective part of signal in the time axis. Denot-
ing by tc the sample number for which the cumulative
energy distribution has value equal or close enough to
0.5, the following relation

ε1
ε2

=
tc

N − tc
, (13)

in connection with the relation (12) give an appropri-
ate pair of the coefficients

(ε1, ε2) =

(
tc
N

ε,
N − tc
N

ε

)
, (14)

whose values are following the energy interpretation
as described above.

4. Sparse denoising strategy

4.1. Sparse Decomposition

Given a digitally recorded acoustic signal S with N
samples, we divide this into overlapping windows Sk,
each of length L using the maximum overlapping rate
of L− 1 samples [6]. Hence, the k − th window Sk is
given by :

Sk = {S[i], i ∈ Z ∩ [k, k + L− 1]}

where the index k ∈ Z ∩ [1, N − L+ 1]. For the cases
subsequently studied and despite the fact that the ap-
proach is computationally expensive, we have chosen
a large number of windows. With this manner we have
achieved a more detailed matching between model and
signal. For simplicity reasons, let us define N −L+ 1
as M .

Nest step is to find a dictionary D = {gp}p∈M in
which, each specific window Sk has been estimated in
a proper sparse form as S̃k :

S̃k =
∑
p∈M

akpgp,

given a quite small approximation error
∑

k ‖Sk −

S̃k‖2 ≤ ε and the same time the coefficients matrix
A = {akp} to be in sparse form as well.

4.2. Inference of sparse codes

Assuming that the dictionary matrix D ∈ R
L,M is

given, we define �(aj ;D) by means of the following
expression:

�(aj ;D,Sj) =

= min
aj∈RM

{
1

2
‖Sj −Daj‖

2
2 + λ‖aj‖1

}
(15)

We have to infer the best matching aj by solving
the previous problem using a simple gradient descent
method. The initial step is to calculate the gradient
of �(aj ;D,Sj) with respect to matrix D.

�aj
�(aj ;D,Sj) = D

T (Daj−Sj)+λ sign(aj)(16)

The gradient has two components, the first one is
related to the reconstruction term whereas the second
one comes from the �1 norm which appears in the
sparsity term.

One critical issue is the fact that the above gradient
function is not differentiable at zero. So, the usage of
a classical gradient descent method is not acceptable
in this case.

4.3. Iterative Shrinkage and Thresholding
Algorithm (ISTA)

The proximal mapping of a convex function h is

proxh(x) = argmin
u

(
h(u) +

1

2
‖u− x‖22

)
. (17)

When h(x) = λ‖x‖1 the i-th element of the solution
has been proven to be [7]

proxh(x)i =

=

{
xi − λ sign(xi − λ) if |xi| > λ

0 otherwise.
(18)
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Looking up again at �(aj ;D,Sj) we can easily ob-
serve that this function can be decomposed into two
convex functions g and h as:

g(aj ;D,Sj) =
1

2
‖Sj −Daj‖

2
2 (19)

and

h(aj) = λ‖aj‖1 (20)

Note that the first function is quadratic, whereas
the second is a l1 function.

Each iteration of the ISTA generalized gradient de-
scent algorithm [8] includes two phases. First, it per-
forms a single step gradient descent algorithm to the
reconstruction error term and then does an update
based on the sparsity term using the proximal map-
ping theory. The whole procedure is expressed in Al-
gorithm 1 bellow.

Algorithm 1 Iterative Shrinkage and Thresholding
Algorithm

1: procedure ISTA(D,Sj) 	 Required the
dictionary.

2: Initialize a
0
j 	 Randomly chosen

3: k ← 0
4: repeat
5: ã

k+1
j ← a

k
j − t DT (Da

k
j − Sj) 	 update

from reconstruction term
6: a

k+1
j ← proxh(ã

k+1
j ) 	 update from the

sparsity term
7: k ← k + 1
8: until ‖ak+1

j − a
k
j ‖2 < tol

9: âj ← a
k+1
j

10: return âj

4.4. Online dictionary learning algorithm

We see our initial problem of total optimizing again
that was previously presented. The purpose of this
section is to choose the best possible dictionary D for
the best description of the signal characteristics. For
this end, we shall employ the algorithm of online dic-
tionary learning with mini-batch extension proposed
by J. Mairal et al [8].

min
D

1

M

M∑
j=1

min
aj

�(aj ;D,Sj) (21)

Let us assume that aj does not depend at all on
dictionary choice. This is generally not true but if we
consider that D changes slowly enough we can use

this simplification without issues. So, the minimiza-
tion problem is written in the form

min
D

1

M

M∑
j=1

1

2
‖Sj −Dâj‖

2
2 (22)

Note that only the reconstruction term contributes to
the dictionary learning procedure.

It is crucial that we choose matrix D to have all
columns with unit Euclidean norm. We remind that
the columns of D need not be orthogonal (linear in-
dependency is not required).

Having assumed that the training set composed of
independent and identically distributed (i.i.d) sam-
ples of a distribution function p(x), here p is simply
an typical uniform distribution, dictionary training al-
gorithm draws η elements (a mini-batch) and adapts
the dictionary in order to achieve a better matching
with the members of the mini-batch. This procedure
is being iterated for a quite big number of steps (in
our case T = 1000).

Algorithm 2 Online Dictionary Learning with mini-
batch extension
1: procedure DictLearning

2: A ← 0M,M , B ← 0L,M 	 No prior
information

3: k ← 0
4: for t = 1, T do
5: Drawn {Sti}i∈[1, η]∪Z from p(x)
6: for i = 1, η do
7: âti = ISTA(D,Sti), 	 using

Algorithm 1
8: if t < η then
9: θ ← tη

10: else
11: θ ← η2 − η + t

12: β ← (θ − η + 1)/(θ + 1)
13: A ← βA+ âti â

T
ti

,
14: B ← βB+ Sti â

T
ti

,

15: for j = 1, N do

16: uj ←
1

Ajj

(bj −Daj) + dj

17: dj ←
1

max(‖uj‖2, 1)
uj 	 Update the j

column of dictionary

18: return D 	 Return the trained dictionary

4.5. Signal reconstruction

Once dictionary D has been trained and the coeffi-
cient vectors âj has been calculated for all windows
Sj , we are capable of approximating a denoised ver-

sion Ŝj for each window frame Sj as

Ŝj = D âj , j = 1, . . . ,M. (23)
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Figure 1. The simulated shallow water environment with
a cold eddy.
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Figure 2. The simulated noise-free signal

Our final goal is to construct a denoised version of
the signal using the approximations Ŝj of overlapping
windows. We have got c(n) number of segments each
of them includes an estimation of n−th sample of the
signal, where c(n) is given by the function :

c(n) =

⎧⎪⎨
⎪⎩
n if n ∈ [1, L)

L if n ∈ [L,N − L]

N − n+ 1 if n ∈ (N − L,N ].

(24)

We are able to define an approximation of actual
signal x as the expected value of all mentioned ap-
proximations. We would like to make clear that we
have been working under the assumption that every
approximation has the same impact to the final esti-
mated value. Therefore, we get the approximation as
a typical mean value of the observations, hence

x̂[n] =
1

c(n)

min(n,M)∑
k=max(1,n−L+1)

Ŝk[n− k + 1] (25)

5. Testing with a synthetic signal

We are now testing the denoising strategies presented
above, using synthetic signals.

As a test case, we are considering a simulated shal-
low water environment with a cold eddy. This en-
vironment has been used in a previous work [9]. A
tomographic experiment is considered using a Gaus-
sian source and a single receiver. The environment is
shown in Figure 1 and the simulated recorded noise-
free signal is shown in Figure 2.

We add noise to this signal so that the noisy signal
has SNR, 5, 10 and 17 dB and we apply the new
denoising strategy with whole or cropped signals.

5.1. Improvement measure of the characteri-
zation scheme

In order to assess the contribution of the denoising
schemes to the quality of the statistical characteri-
zation, we define a measure in the logarithmic scale,
expressed in dB employing the KLD as following :

I(Ŝ1, Ŝ2;S) = −10 log10

(
Ds(Ŝ1,S)

Ds(Ŝ2,S)

)
(26)

where Ŝi are the signals after the denoising processing
and S the noise free version of the simulated signal
(whole or cropped).

Using this measure of course we assume that we
know the noise-free signal, which is possible as we
are dealing with simulated (synthetic) signals. When
two signals are identical the KLD is 0 as their sta-
tistical characterization is also identical. When KLD
has a low value, the denoised version of the signal
is close to the noise-free version. Therefore, compar-
ing two KLDs the lowest value indicates better cor-
respondence between actual and noisy signal. Thus,
by means of this formula we have a first indication on
the efficiency of the denoising strategy. Larger value
of I indicates better denoising effect.

In Table I we illustrate the comparison among pos-
sible choices of denoising strategies. We are applying
the sparse denoising strategy before or after the crop-
ping of the signal as described in Section 3, thus ob-
taining four different procedures. We observe an im-
portant improvement of signal characterization when
we apply the sparse denoising procedure to the mea-
sured signal, with the improvement reaching its abso-
lute maximum when this procedure is applied to the
whole signal, as expected. Moreover we observe that
the improvement is more pronounced in cases where
we have signals with low SNR.

6. CONCLUSIONS

We have presented the impact of a new sparse de-
noising scheme to the quality of characterization of
underwater acoustic signals under different denoising
scenaria involving or not cropping of the recorded sig-
nal to isolate the energy efficient part of it. The new
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Table I. Comparison between signals as regards their characterization quality. The measure I express the amount (in
dB) of characterization improvement when applying alternative denoising strategies

comparison between I (dB), SNR 17 dB I (dB), SNR 10 dB I (dB), SNR 5 dB

denoised (whole) and noisy (whole) 62.83 59.50 68.88

denoised (whole) and noisy (cropped) 15.21 12.77 22.44

denoised (cropped) and noisy (cropped) 28.31 36.24 48.64

denoised (cropped) and denoised (whole) 13.11 23.47 26.21

method is considered among the most efficient tech-
niques of denoising and feature extraction of wave-
forms and images. As expected, the characterization
quality was significantly improved at least for the case
studied.

However, in order to get more conclusive results, we
have to validate these schemes by applying the signal
characterization scheme to inverse problems of ocean
acoustic tomography and sea-bed classification. The
efficiency of the denoising strategy will be assesed on
the basis of the inversion results which will correspond
to the estimation of the critical geoacoustic parame-
ters of the environment.
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