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Summary 
A numerical method to simulate aerodynamically generated sound and its propagation is presented 
in this paper. The transient flow field solution is established using a compressible 2D Navier 
Stokes solver. The source terms are then defined by using Howe’s vortex sound aeroacoustic 
analogy and are evaluated from the flow solutions. The propagation of acoustic waves from these 
sources is then performed using the wave expansion method (WEM). This is a discretization 
method suitable for solving wave propagation through inhomogeneous potential flows. The 
method is tested on a flow of a rectangular open cavity. The flow conditions are a free stream 
Mach number of M=0.5 and Reynolds number of Re=1500.. The numerical results are compared 
to experimental and numerical results from other studies of the same configuration.  

 
 

 
 
1. Introduction1 

In the recent years, the possibility to preform 
large-scale computations has enabled the use of  
aeroacoustic analogies for a broader range of 
applications. This is since a larger portion of the 
turbulent flow field can be resolved this gives the 
opportunity to compute the time-dependent 
aeroacoustic sources for higher Reynolds number 
flows. The aeroacoustic analogy of Lighthill [1] 
has since its introduction been the starting point 
for a major part of flow induced noise 
computation. Since its derivation, other analogies 
based on the one of Lighthill have also been 
proposed. For instance Curle’s equation [2], where 
the effect of solid surfaces is included in the 
solution and is accounted for by sources 
introduced on the surfaces. Curle’s solution has 
                                                      

 

then been extended to account for the effect of 
source motion in the analogy by Ffowcs-Williams 
and Hawkings [3]. Vortex based analogies have 
also been formulated from Lighthill’s analogy by 
for instance Powell and Howe [4, 5]. These might 
give a less extended source region than the sources 
in Lighthill’s analogy and could therefore present 
an advantage.  
The most common use for these aeroacoustic 
sources is to assume that the sources are compact 
and then calculate the propagated sound waves 
with an integral method using a free-field Green’s 
function. Another method proposed by Oberai [6] 
is the variational form of Lighthill’s analogy which 
has enabled the use of Finite Element 
Formulations for solving an inhomogenus wave 
equation in the form of a boundary value problem. 
The advantage of this is that the propagation can 
be evaluated for complex geometries where the 
scattering and background flow effects can be 
accounted for in the numerical solution.  
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One efficient discretization for solving acoustic 
propagation through an inhomogeneous flow is the 
Wave Expansion Method (WEM). WEM is based 
on the Green’s function discretization that was 
firstly developed by Caruthers et al [7]. The WEM 
discretization has recently been further developed 
by O’Reilly [8], Liu [9] and others who have 
shown it to be highly efficient in solving acoustic 
wave propagation. The method has been shown to 
give accurate solutions down to a spatial resolution 
of two points per wave length. The aim of this 
work is to take the first steps towards evaluating 
the possibility of using the Wave Expansion 
Method for the propagation of sources defined by 
a Vortex sound based aeroacoustic analogy.  
 
2. Theoretical background 

2.1. Aeroacoustic analogy 

Powell formulated an aeroacoustic analogy which 
highlights the significance of vorticity as an 
acoustic source. In this formulation which is based 
on the total enthalpy, the Lamb vector, L=(ω×v), 
acts as a source where v is the velocity vector and 
ω is the vorticity vector. The vorticity based 
formulation can have the advantage in that the 
source region can be less geometrically extended 
than the source region from Lighthill’s analogy. 
This would mean that a smaller region of the flow 
would have to be used to evaluate the aeroacoustic 
sources.  
Howe further showed that for low Mach numbers 
this can reduce to a wave equation as  

 (6) 

 
where the total enthalpy, B, relates to pressure as 
 

   (7) 
 
c0 and ρ0 is the farfield speed of sound and density. 
In this case, the flow simulations will be used to 
compute the Lamb vector in the source region. 
This will then be used as a volume distributed 
source in the propagation. When the acoustic 
analogy is used in combination with flow 
simulations this is usually the aeroacoustic source 
term that would be computed from the flow solver.  
The distributed sources can then be propagated by 
integrating the convolution of the source with a 
Green’s function over the source region. This is 

very convenient when the free field Green’s 
function can be used and the propagation is not 
affected by the scattering of surfaces. When this is 
not the case, a tailored Green’s function has to be 
used. This is usually much more complicated or 
impossible to solve analytically and therefore it is 
often more useful to solve the propagation with a 
volume or surface based numerical method such as 
BEM, FEM or WEM. 
   

2.2. Wave expansion method 
The Wave Expansion Method (WEM) is a 
physically based discretization method that can be 
used for solving wave propagation in the 
frequency domain. 

2.2.1.  Discretization  
A schematic of the discretization in WEM is 
shown in Figure 1. When solving for pressure, the 
pressure at node a is approximated by a 
superposition of fields defined by J plane waves 
with amplitude γj and direction vector αj. The 
pressure at node a is there by described 
 

 (9) 
 

Figure 1.  Stencil used in the Wave Expansion Method 
discretisation. 
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where 

  
and 

  
 
The pressure at the neighboring nodes are then 
approximated by the same waves given by 
 

 (10) 
where 

 
and  

 
 
The number of plane waves does not have to 
correspond to the number of neighboring nodes. 
Thus when the number of plane waves are more 
than the number of neighboring nodes the system 
is underdetermined. The wave’s amplitudes are 
then calculated by premultiplying with the Moore-
Penrose pseudo-inverse of H. 

 (11) 

The pressure at node a can then be related to the 
pressure at the neighbouring nodes as. 

 (12) 

 As this procedure is performed for each node in 
the computational domain a system of equations in 
the form of equation (13) can be assembled. 

 (13) 
   
Where K is an unsymmetrical and sparse stiffness 
matrix and Q will act as a source term. 
 

2.2.2. Introduction of sources 
If multipole point sources are introduced, solving 
for instance the inhomogeneous Helmholtz 
equation, with WEM discretization, the correct 
amplitude of the resulting pressure field might be 
difficult to achieve with this kind of wave based 
method. However a robust way to introduce a 
point monopole source was shown by Liu [9], 
where the point source was distributed to the 
neighboring nodes using free field Green’s 
functions. Given the stencil in Figure 2 the 
pressure at node 1 from a source at node s can be 

evaluated using a Green’s function. The pressure 
in node 1 is then formulated as 
 

(14)
 
where q is a monopole source  
 

 (15) 
  
as described in Sec. 2.2.1. the pressure at the 
neighboring nodes are included through 
 

 (16) 
 
where Q1 is the source distribution at the 
corresponding nodes evaluated with the green’s 
function 
 

 (17) 
 
Since the solution is not given at the source node 
this node is left out from the evaluation at node 1. 
This gives the following expression for the 
pressure in node 1, 
 

 (18) 
 
 
In a similar fashion the Green’s function of a 
multipole source can be introduced. For a 
monopole the Green’s function in 2D is  
 

 (19) 
 

Figure 2. Stencil used for evaluation of a point 
source at node s. 
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where  is the zeroth order Hankel function of 
the second kind, i= , k is the wave number and 
x the location of the receiver. For a dipole source 
the resulting Green’s function is 
 

 
 (20) 
 
Here  is the first order Hankel function of 
second kind. θ is the angle with regard to the 
dipoles strongest radiation direction.  
 

2.2.3. Propagation of sound with mean flow 

The propagation of acoustic waves in an 
irrotational, steady, homentropic flow can be 
described by the acoustic potential ϕ and is 
governed by.      

  
 
 (21) 
 

where , ,  are the local mean velocity, density 
and speed of sound. The pressure and velocity are 
then related to the acoustic potential as 

 and . If the mean flow 
gradients are neglected, Equation 21 can be 
formulated as 

  
 
 (22) 
 
where M is the local Mach vector, k  is the local 
wave number. Considering these to be constant over 
the stencil used at a point xa, the fundamental plane 
wave solution may be determined by solving for the 
roots of the characteristic equation.  
 

 (23) 
 
where ω is the angular frequency and α is an 
arbitrary unit vector in the direction of the plane 
wave propagation. These waves can then be used in 
the wave expansion method [7, 8].   
 
3. Flow results 

The acoustic field caused by the flow over a 2D 
open cavitiy has been investigated numerous times 
over the past 50 years. More recent work that 

Figure 4. Contours of dimentionless  vorticity in the 
range ωD/U=-5 to 1.67  for three consecutive time
steps. Where U is the freestream velocity. 

Figure 3. Acoustic pressure from a dipole point 
source in a 2D circular domain. The x-axis
corresponds to the strongest radiationg direction of 
the dipole. 
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resembles the geometrical setup used here was 
performed by Rowley et.al [10], where numerical 
simulations for a range of cavity configurations 
and flow conditions where studied. Depending on 
the depth to length ratio, the speed of the incoming 
flow and the boundary layer thickness upstream of 
the cavity, the flow in a 2D open cavity is usually 
divided into two different flow modes. The first 
one is referred to as shear layer mode. In this mode 
vorticies are rolling up at the leading edge of the 
cavity. The vorticies are then convected 
downstream by the main flow. As this vorticial 
flow interacts with the trailing edge of the cavity 
an acoustic wave forms and propagates towards 
the leading edge. This acoustic wave then interacts 
with the leading edge shear layer creating a 
feedback mechanism when vorticity once again 
rolls up at the leading edge. Due to this feedback 
mechanism it is crucial that the flow simulations 
include compressible effects to capture this 
interaction of the trailing and leading edge. If the 
length to depth ratio of the cavity is increased the 
flow will enter a wake mode behavior. In this 
mode a vortex is formed and will start to grow 
inside the cavity which does not have the same 
acoustic feedback mechanism. 

For this work a 2D cavity at a Reynolds number of 
Re=1500, Mach number of M=0.5 and length to 
depth ratio of L/D=2 is chosen as a test case. 
Under these conditions the cavity flow can be 
described by a shear layer mode. The flow 
simulations are performed in the commercial flow 
solver package CCM+. To capture the delicate 

acoustic coupling shear layer interaction with the 
trailing edge a grid of 440,000 nodes has was used 
for the 2D CFD simulations. Figure 4 show the 
dimensionless vorticity in the cavity at three 
consecutive times. The shear layer interaction with 
the trailing edge is the key noise source as strong 
vorticies will form on both sides of this edge. The 
flow in the cavity has a very strong periodic 
behavior. In the flow simulations the first tonal 
component of the cavity flow was at a Strouhal 
number, St=fL/V = 0.215, where f is the frequency, 
L is the cavity length and V is the free stream 
velocity. Due to this strong periodic behavior the 
only frequency considered for the propagation in 
this paper corresponds to this first cavity tone. 
After the flow field was statistically converged to a 
satisfying periodic behavior, the aeroacoustic 
sources were saved for a total of 2000 timesteps. 
FFT was then used to transform the sources into 
the frequency domain. Since the grid requirements 
for CFD are much higher than the grid needed to 
resolve the acoustic waves near the source region, 
a coarser acoustic mesh of the cavity with ~60000 
nodes was generated for the acoustic propagation. 
The aeroacoustic sources were then interpolated 
onto the acoustic nodes using linear interpolation. 
Figure 5 shows the absolute divergence of the 
lamb vector given from the CFD. The obvious 
sources appear to be the shear layer passing over 
the cavity and interacting with the trailing edge of 
the cavity.   
 
4. Aeroacoustic results      

The equivalent sources for the main cavity tone 
frequency are propagated in a domain with a 
circular outer boundary located 100 cavity depths 
from the leading edge of the cavity. At this 
boundary a non-reflective boundary condition is 
imposed. To implement non-reflective outer 
boundary conditions is not always easy for volume 
discretizing methods. In the WEM this can be 
enforced by only considering the plane waves in 
the outgoing directions. A uniform background 
flow of Mach=0.5 is used for the simulations. 
Since the WEM will incorporate the volume 
distributed sources as point sources, each nodes 
equivalent source will be evaluated using the area 
of the corresponding faces. The acoustic pressure 
in figure (6) shows a forward directivity of the first 
cavity tone which correspond previous literature 
and the CFD solutions.    
      

Figure 5. The absolut value for the divergence of the 
Lamb vector for the first tonal component of the cavity 
flow nondimensionalised by div(L)*D^2/U^2. 
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5. Conclusions 

In this paper a method using vortex based 
aeroacoustic sources evaluated in CFD together 
with a plane wave based discretization method for 
the wave propagation is proposed. The 
discretization is proven to give accurate solutions 
at very few points per wave length and may 
therefore provide an efficient method for 
aeroacoustic computations in frequency domain. 
The CFD results of the vorticity in the source 
region compare well with previously presented 
results given from literature. In this first step 
methods for introducing sources of monopole and 
dipole type in the WEM have been proposed and 
compared to analytical solutions with good 
agreement. There is however still a need to 
investigate the coupling of the aeroacoustic 
sources from the CFD solution to the propagation 
solver.       
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Figure 6. Real part of the acoustic pressure, normalized 
by the dynamic pressure, for the first cavity tone. 
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