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Summary

Poroelastic materials are often applied as effective noise measures. They are, however, most effec-
tive at higher frequencies. A lot of research has been performed to increase absorption also at lower
frequencies. A promising solution is to add inhomogeneities to the foams, being inclusions or perfora-
tions. Recently, a Wave Based Method was developed to predict the dynamic response of poroelastic
materials, described by the theory of Biot. This Trefftz approach was shown to be very effective for
geometrically simple problems. A sufficient condition for the method to converge is that the consid-
ered problem domain is convex. Non-convex domains have to be partitioned into convex subdomains.
Consequently, domains with circular inclusions cannot be accurately accounted for with the Wave
Based Method; this problem was overcome with the so-called Multi-Level framework, which was
introduced for acoustic and structural dynamic problems. This paper extends the Multi-Level ap-
proach to efficiently account for inclusions in a poroelastic material. The method is validated through
comparison to the Finite Element Method.

PACS no. 43.20.+g

on different weak formulations of which the (u®,p)-
formulation [6], with u® the solid displacement vector
and p the pore pressure of the poroelastic material,
is preferred due to the smaller number of degrees of
freedom (DOFs) per node. Although the FEM has the
advantage that complex geometries can be accounted
for, its use is restricted towards the low-frequency

1. Introduction

Poroelastic materials are often applied as noise re-
duction measures in vibro-acoustic applications. As a
rule of thumb the thickness of the material should at
least be a quarter of the wavelength to provide good
absorption, leading to bulky solutions for lower fre-

quencies. Much research has been spent to increase
the absorption in the low frequency range, without
altering the thickness of the poroelastic layer. It has
been shown in literature that by using e.g. perfora-
tions [1] or inclusions [2] in a foam the low-frequency
acoustic properties can be drastically improved.

Poroelastic materials consist of two constituents:
the elastic frame and the fluid filling the voids. Many
models, applying different degrees of approximations
[3, 4], are available. The theory by Biot [5], combined
with the so-called Johnson-Champoux-Allard model
is most commonly used to describe the coupled dy-
namic behaviour of the homogenised solid and fluid
phases of the material, accounting for viscous, iner-
tial and thermal effects.

The Finite Element Method (FEM) is most often
used to model the fully coupled Biot equations based
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range as the computational cost increases for higher
frequencies: the wavelengths are smaller and often ex-
tremely fine discretisations are needed to obtain ac-
curate results.

Recently, the Wave Based Method (WBM) [7], a
Trefftz based prediction technique has been extended
to solve the Biot equations [8]. The method uses exact
solutions of the governing partial differential equa-
tions to describe the field variables. Specifically for
Biot models, the method explicitly accounts for the
three different wave types that propagate in this class
of materials. As compared to standard element based
techniques, the inclusion of a priori known informa-
tion on the physics of the problem in the model leads
to a more efficient solution. The main drawback of
the method is that it is limited to geometrically sim-
ple problems. A sufficient condition for the method
to converge is that the considered problem domain is
convex. Non-convex domains have to be partitioned
into convex subdomains. Consequently, domains with
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circular inclusions cannot be accurately accounted for
with the WBM. To overcome this constraint, the so-
called Multi-Level Wave Based Method (ML-WBM)
has been introduced for acoustic and structural dy-
namic problems. The original problem is subdivided
into ‘levels’ that separately account for the dynamics
of the bounded domain and for the scattering of the
inclusions. It combines solutions of the bounded do-
main and outgoing solutions exterior to the inclusions
to describe the dynamic fields using the superposition
principle.

This paper extends the ML-WBM approach for
poroelastic materials. Unbounded wave functions are
defined that are exact solutions of an unbounded
poroelastic domain exterior to a circular truncation.
The known bounded wave functions and novel un-
bounded wave functions are combined in a Multi-
Level framework.

2. Problem description

The Biot theory [3] uses an equivalent solid and a
compressible fluid continuum description on a macro-
scopic level, assuming that the pores are homoge-
neously distributed in the material. The two coupled
partial differential equations describing the dynamic
behaviour of the solid and the fluid phase are:
Q? -
NV2us(r) + V[(A + 3 + N)e*(r) + Qe’ (r)] (1)
=~ (prud(r) + pr2u’(v)),
VIQe* (r) + Rel ()]
= —w?(pr2u®(r) + poou’ (r)).
In these equations, u®(r) is a displacement vector,
e®(r) the strain vector, e®(r) the longitudinal strain,
0°® the stress tensor in phase e and A, Q, R, N, P11,
P12, P22 are material properties, being fully described
in literature [3, 4].

For a poroelastic material, three boundary condi-
tions have to be specified at each point of the bound-
ary in order to have a well-posed problem. In this pa-
per only mechanical and mixed boundary conditions
are used. The boundary I' = df2 of the considered do-
main 2 can be divided into two non-overlapping parts
(' =T UTmi) along which one of the two following

sets of boundary conditions hold:
e mechanical boundary conditions, where the stress

resultants are prescribed:

(2)

rel,.:

with 2 (r), 3(r) and 57 (r) the prescribed values of
the normal and tangential stress resultant compo-
nents of the solid phase in the normal and tangen-
tial direction to the boundary and the prescribed
hydrostatic stress of the fluid phase, respectively.

1156

EuroNoise 2015
31 May - 3 June, Maastricht

e mixed boundary conditions:

Ry (1) = u(r) — w(x) =0
r €T Ryy(r) =ul(r) —al(r) =0 .(4)
Ro:(r) = o3(r) ~03(x) =0

For a sliding edge, the prescribed values of @} (r),
@/ (r) and 73(r) are zero.

3. WBM for 2-D bounded poroelastic
problems

This section briefly introduces the methodology of the

WBM for a general 2D poroelastic problem. A com-

plete description can be found in [8]. The WBM is

a deterministic numerical method based on an indi-

rect Trefftz approach. It partitions the problem do-

main into a limited number of large convex subdo-
mains. Convexity of the subdomains is a sufficient
condition for the method to converge towards the
exact solution of the problem. Within each subdo-
main, the dynamic field variables are approximated
using an set of wave functions which intrinsically sat-
isfy the governing Helmholtz equation(s). The DOFs
are the contribution factors of each wave function in
this expansion. Enforcing the boundary and inter-
face conditions along the subdomain boundaries us-
ing a Galerkin weighted residual formulation leads to

a small, complex and frequency dependent system of

equations which can be solved for the contribution

factor of each wave function. The general modelling
procedure of the WBM consists of four steps that are
briefly recalled:

1. Selection of a suitable set of wave functions for each
subdomain: For sake of simplicity, this paper only
considers convex subdomains.

2. Selection of suitable set of wave functions for each
subdomain Q(® . To apply the WB theory to poroe-
lastic materials, the Biot equations have to be de-
coupled into a set of Helmholtz equations. As noted
by Biot, poroelastic materials support three wave
types simultaneously, one shear and two types of
compressional waves. In the case that the material
is isotropic, a possible decomposition for the solid
displacements is given by:

{u )=~ (—,;Qe‘i(r) - ,;()>

1
+V x —Zwi(r)
ki

)

with ej(r) and e5(r) two volumetric strains
(e*(r) = ef(r) + e5(r)) and w?(r) the rotational
strain of the solid phase. By substituting (5) in
the Biot equations (1), one obtains three decoupled
Helmholtz equations with two longitudinal wave
numbers k;, and k;, and one shear wave number
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k: [8]. Each of the resulting strain fields is then
approximated using a set of wave functions. Each

wave function <I>Eva ) exactly satisfies the homoge-
neous part of the associated decoupled Helmholtz
equation. For two-dimensional bounded domains,
two sets of wave functions are distinguished, the r-
and the s-set:

o (a,y) =
sin(kmoqjlx) , cos(kxj)r ) } L
o (a,y) =
e M {sin(k{s) y), cos(ki) y) |

(6)
ywsJ

where  {f(z,v),9(z,y)} h(z,y) indicates the
definition of two independent basis functions
f(z,y).h(z,y) and g(z,y).h(z,y). The following
wave number components are selected to fulfill the
Helmholtz equation and to ensure convergence:

(v 42) = (S e (€2))
(ke k(2. ) = (im ! w;)f ) - ®)

with w{® = 0,1,2,... and w* = 0,1,2,... The
dimensions L;a) and Ll(,a) are the dimensions of the
(preferably smallest) bounding rectangle circum-
scribing the considered subdomain and k; is the
physical wave number of the considered Helmholtz
equation.

3. Construction of the WB system matrices via a
weighted residual formulation of the boundary
and interface conditions. Following a Galerkin ap-
proach, the weighting functions are expanded us-
ing the same wave functions as applied for the field
variables.

4. Solution of the system of equations, yielding the
wave function contribution factors and postpro-
cessing of the dynamic variables.

4. Multi-Level WBM for poroelastic
problems

Dynamic problems containing scatterers or inclusions
are difficult or impossible to model using the standard
WBM due to the convexity requirement. To overcome
this problem, the ML concept has been developed.
The ML approach was in a first step developed for un-
bounded acoustic multiple scattering configurations
[9] and was afterwards extended towards bounded
problems [10]. It subdivides the problem into differ-
ent ‘levels’; each level accounts for the dynamic field of
only the bounded problem domain without inclusions
or of the scattering of one single inclusion. The total
solution field can then be obtained by combining the
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Original problem with
two inclusions

Bounded level

(1.1)
Ii. o .
» O 1 Unbounded levels
(1,1) ;0 1
Q LN (2,

Figure 1. Illustration of the WBM Multi-Level concept.

different levels of the problem, using the superposition
principle. The concept is illustrated in Figure 1, show-
ing a bounded problem domain with two inclusions.
For the sake of simplicity, only circular inclusions are
considered. The multi-leve]l WBM approach consists
of four steps and are briefly revisited and then applied
to poroelastic problems:
1. Division of the original problem into levels:
In a first step the problem is divided into a number
of levels: The first level includes the bounded prob-
lem as if there were no inclusions present. If needed,
this bounded domain can be subdivided into non-
overlapping convex subdomains Q(®) where « in-
dicates the index of the bounded subdomain. In
this paper, only one bounded subdomain QM) is
considered. Each other level contains one single in-
clusion as if the bounded domain and the other
inclusions were not present. The region exterior to
the scatterer within an unbounded level is trun-
cated by a truncation circle l"gi’ﬁ) where « indi-
cates the index of bounded subdomain to which to
inclusion belongs and [ indicates the index of the
unbounded level. The truncation circle subdivides
the region exterior to the inclusion in bounded and
unbounded domains. In this paper, the truncation
circle coincides with the boundary of the inclusion,
such that only an unbounded submain results. The
truncation surface I‘gi’ﬁ) can be subdived into dif-
ferent zones, indicated with subscript e, on which
different boundary or interface conditions are im-
posed. In this paper, only sliding edge conditions
(4) are considered. The unbounded region exte-
rior to Ffﬁﬁ) is denoted Q(®#), The problem de-
picted in Figure 1 is thus divided into three levels:
One bounded level consisting of only one bounded
subdomain QM and two unbounded levels each
containing one unbounded subdomain, Q1 and
Q2
2. Selection of wave functions for the different levels:
For each level, a suitable wave function set is se-
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lected. For the bounded domain Q). resulting
from the bounded level, poroelastic wave functions
are selected based on the smallest bounding box cir-
cumscribing the bounded subdomain as described
in the previous section. For the unbounded lev-
els, poroelastic wave functions are needed that de-
scribe the dynamic poroelastic fields exterior to
the associated truncation circle. These wave func-
tions should a priori fulfill the radiation condi-
tions at the boundary at infinity [',. The well-
known Kupradze radiation conditions for radiated
P- and S-waves are applied [11]. Besides, of course,
all wave functions should inherently fulfill one of
the decoupled Helmholtz equations. The following
unbounded wave functions are selected for subdo-
mains Q1A

HP (ki,r)cos (v), v=0,1,...
v (r,0) =

)

(9)
o (kyr)cos (vh), v=0,1,...

H? (k. r)sin(v0), v=1,2,...

\Ilgﬁ) (r,0) = )
H (kyr) sin (v0), v =1,2, ...
(10)
where x is 1 or 2. Once the field variables for the dif-
ferent levels have been defined, they are combined
for the common domain €2 by using the superposi-
tion principle. Let us denote ¥")(r) the considered
field variable approximation of the bounded poroe-
lastic subdomain Q) and Y#)(r) the field vari-
able approximation of the S-th unbounded poroe-
lastic subdomain Q%) . Then the dynamic field
L1 (r) in Q=M N oD N Q12 can be

written as:
K0 () = W () + x5V () + 2 (x). (11)

3. Construction of the system of equations:
The boundary and interface conditions need to
be enforced, which is again achieved by using a
weighted Galerkin scheme, using the compound
wave function sets for subdomains Q(*'). The choice
of weighting function is different for the differ-
ent boundaries. To have valid weighting functions,
they have to be able to represent the dynamic
field on the considered boundary. Consequently the
unbounded wave functions associated with a cer-
tain truncation surface are used as weighting func-
tions for the residuals on that truncation and the
bounded wave functions are used as weighting func-
tions on the exterior boundaries of the domain.

4. Solution and post-processing:
The system matrices can be solved for the unknown
contribution factor of all wave functions. In a post-
processing step the response field can be evaluated
in which the variable expansion of Q(1") is used.

A more detailed description can be found in [10] for

acoustic and plate membrane problems.
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Figure 2. Rectangular poroelastic domain with a circular
inclusion, x indicates the postprocessing point in which
frequency response functions are calculated.

5. Numerical verification example

Figure 2 shows the problem geometry used to val-
idate the ML-WBM implementation for the poroe-
lastic Biot equations. A rectangular domain of 1m
by 0.4m is considered, containing one inclusion of
radius 0.1m. On the top layer an acoustic pressure
p*(z) = 23 — 22% + 1 N/m? excites the system. On
all other boundaries sliding edge conditions (4) are
imposed. The considered poroelastic material is a
polurethane foam; its properties and those of the sat-
urating air are given in Table 1.

Air properties

k=2.57-10 W (mK)

cp = 1.005 - 103J/(kgK)

R = 286.7m?/(s*K)

T = 293.15K

y=14

vy =15.11-10"%m?/s

p; = 1.205kg/m>
Polyurethane foam material

Young’s modulus E, =70-10°Pa

Thermal conductivity
Specific heat

Gas constant
Temperature

Ratio of specific heats
Fluid kinematic viscosity
Fluid density

Loss factor m = 0.15
Poisson ratio v =0.39
Bulk density of the solid phase p1 = 22.11@5]/7713
Porosity h = 0.98

A=1.1-10"%m
A =7.42.10"%m

Viscous characteristic length
Thermal characteristic length
Static flow resistivity o =3.75-10%kg/(m?s)
Tortuosity oo = 1.17

Table I. Material properties of air and polyurethane foam

To benchmark the WB results, different FE models,
based on the (u,p)-formulation [6], are implemented
in Comsol 4.4a using quadratic triangular Lagrangian
elements. The WBM code is implemented in Matlab
R2013b. All calculations are run on a Linux-based
2.8 GHz Ivy bridge system with 64GB RAM. Con-
vergence studies are run single threaded.

Figure 3 shows the contour plot of the absolute
value of the solid displacement in the z-direction, |ug|,
calculated with the WBM at 500Hz. In total 555 wave
functions are used: 492 bounded and 63 unbounded
wave functions. These numbers are selected such that
the smallest wavelength resulting in the wave func-
tions is less or equal to the smallest physical wave-
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Figure 3. Contour plot of |uj| at 500Hz, calculated with
WBM (555 DOF).
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Figure 4. Logarithmic relative error e(4;(r)) of the WBM
model (555 DOFs) with respect to FEM (454,815 DOFSs).

length at the considered frequency. For the three dif-
ferent wave types, the same number of wave functions
is applied. The figure clearly shows that the imposed
boundary conditions on the left and right hand side
are fulfilled. Figure 4 shows the logarithm of the rela-
tive error with respect to a fine FE model, calculated
as:

clig(ry) = )

(12)

The reference FE model was constructed by starting
from a coarse FE mesh of 378 DOFs and running 11
adaptive refinements such that a model of 454,815
DOFs is obtained. A good accuracy is seen, except
for zones where the displacement is close to zero and
the relative error is most sensitive to small variations
due to a division by nearly zero.

Figure 5 shows the real and imaginary part of the
shear stress o3, of the solid phase, evaluated in a
point with coordinates (0.9,0.2), with the WBM and
the FEM. For the FEM, again 11 adaptive refine-
ments are used for each frequency line. The number
of wave functions is increased with frequency accord-
ing to the same rule. The results are on top of each
other, showing that accurate results are obtained for
the frequency range of interest.

Finally, a convergence study has been performed to
assess the potential of the ML-WBM with respect to
the FEM for poroelastic materials. Two different fre-
quencies are considered: 250Hz and 750Hz. The aver-

1159

Figure 5. Frequency response function of the shear stress

of the solid phase o3, evaluated in point (0.9,0.2) and

calculated with the WBM and FEM.

Model number f DOFs hypae [m]
1 1,302 0.1
2 2,664 0.067
3 3,354 0.053
4 5,076 0.037
5 15,876 0.02
6 60,312 0.01
7 239,184 0.005
8 952,608 0.0025
9 3,802,176 0.00125

Table II. FEM model data

age relative prediction error on the pore pressure is
calculated according to:

1 ¢ ! (rj) —p’
e=—>» ¢g; with ¢ =] L

with n the number of selected response point. For this
specific case 14 equally distributed response points are
chosen in the problem domain. Table II contains the
FEM model information. These models are regularly
refined, to avoid the overhead cost related to subse-
quent adaptive refinements. The number of wave func-
tions is increased from 45 to 1137 at 250Hz and from
123 to 3357 at 750 Hz applying minimal wavelengths
corresponding to 0.1 to 4 times the minimal phys-
ical wavelength. An adaptively refined quadratic FE
model is used as a reference, starting from a coarse 378
DOFs model and applying 13 adaptive refinements
such that models of 2,528,712 DOFs and 1,732,341
DOFs are obtained at 250 and 750Hz, respectively.

Figure 6 shows the convergence curves at 250Hz
(black) and 750 (grey) obtained using the WBM and
the FEM. It is clear that the WBM profits from an
increased efficiency by embedding known physical in-
formation on the solution field. It is also seen that the
WBM convergence curves stagnate at the accuracy of
the reference model. When frequency increases, the
same number of FEM DOFs leads to a lower accuracy
for the same calculation time.

ref
(

5| (1)
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Figure 6. Convergence curves of the pore pressure at 250
(black) en 750 (grey) Hz. Finest adaptive FE model used

as a reference.
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Figure 7. Convergence curves of the pore pressure at 250
(black) en 750 (grey) Hz. Finest WBM model used as a
reference.

To illustrate the efficiency of the WBM, the finest
WBM model is taken as a reference in Figure 7, show-
ing that the solution keeps on converging at a high
rate. Excellent accuracies are obtained in a very short
calculation time.

6. CONCLUSIONS

In recent work, the WBM has been extended to
poroelastic problems, described by the Biot equations.
Though very promising results have been obtained
for simple geometries, the method is hampered by its
convexity requirement: domains containing inclusions
cannot be efficiently modelled. For acoustic and dy-
namic plate problems the so-called multi-level frame-
work was introduced. This framework subdivides the
problem domain in levels; each level considers the dy-
namic response of only the bounded domain without
inclusions or the scattering due to a single inclusion.
This paper extends the Multi-Level WBM framework
for poroelastic materials: unbounded wave functions
are derived and combined with bounded wave func-
tions through superposition principle. The method is
evaluated against standard FEM models based on the
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(u®,p)-formulation. The potential of the method is il-
lustrated by a numerical verification example.
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