
 

 

 

 

 

 

 

 

 

 

 

 The 2.5D MST for sound propagation through
arrays of cylinders parallel to the ground
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Summary
In this work sound propagation through arrays of cylinders oriented parallel to the ground is of
interest. The structures are placed in a three-dimensional domain and are insonified by a monopole
or incoherent line source. Assuming a cross-sectionally invariant structure one can efficiently obtain
the 3D pressure field for such arrangements by post-processing a series of 2D solutions - a technique
usually referred to as a 2.5D transform. Since the initiation of the 2.5D transform for outdoor sound
propagation it has been successfully applied together with frequency domain methods such as the
Boundary Element Method and the Equivalent Sources Method. However, to predict for sound prop-
agation through sonic crystal noise barriers the 2D Multiple Scattering Theory (2D MST) is often
used, and has proven to be very efficient. We therefore introduce the 2.5D MST to solve for 3D scat-
tering by clusters of acoustically rigid cylinders. It will be shown that only a few simple substitutions
applied to the 2D MST kernel allows us to solve for imaginary wave numbers, which are needed in
the 2.5D transform. The proposed method is numerically validated for two basic cases: (i) a point
source above rigid ground, and (ii) off-axis scattering by a cylinder in free-field. Both are shown to
be in excellent agreement with the respective reference calculations. We further demonstrate some
calculation results for sound propagation through graded index sonic crystals, and find that off-axis
insonification of these structures shifts the characteristic frequency response upwards, as could be
expected. Finally, we also present calculation results for infinite and finite incoherent line sources and
display the existence of a spectral smearing effect for both source types.

1. INTRODUCTION

In the recent past the interest in sonic crystals has
steadily increased among researchers in various fields
dealing with acoustic wave-propagation. One of the
main reasons it attracted considerable attention is the
fact that these structures can be engineered to specific
needs. For instance, researchers of various groups have
worked on acoustic cloaking devices [1], acoustic wave-
guides [2], acoustic lenses [3], and noise barriers [4].

In the models used to predict the response of
these structures it is often assumed that the source
is a plane or cylindrical wave. When the source-to-
structure distance is large a plane-wave source func-
tion can be assumed with good accuracy. A cylindrical
source function is, however, a better choice when the
source is placed in the vicinity of the object. Still, one
will implicitly assume that amplitude and phase of the
source and scattered field are constant along the in-
variant axis of the geometry. This is not necessarily an
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issue if the actual source of interest is well described
by a coherent line, but may introduce significant dis-
crepancies between predictions and reality when the
actual problem is better described by a (finite) in-
coherent line source or (off-axis) monopole. A study
by M. Heckl showed, among other things, that char-
acteristic propagation phenomena of periodically ar-
ranged cylindrical scatterers will shift up in frequency
for oblique plane wave incidence [5]. In other words,
when off-axis source-receiver positions are of interest
a two-dimensional (2D) model may not capture the
full complexity of a three-dimensional (3D) problem.

The current analysis of sonic crystals, and in par-
ticular for sonic crystal noise barriers, is still mostly
done by means of 2D models. The 2D Multiple Scat-
tering Theory (2D MST) is therefore often used, and
has proven to be very efficient. Now, with the assump-
tion of a cross-sectionally invariant structure the 3D
pressure field can be obtained by post-processing a
series of 2D solutions - a technique usually referred
to as a 2.5D transform. Since the initiation of the
2.5D transform for outdoor sound propagation by
Duhamel [6], it has been successfully applied together
with frequency domain methods such as the Bound-
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Figure 1. Illustration of a GRIN SC in a three-dimensional
domain.

ary Element Method [7, 8] and the Equivalent Sources
Method [9]. In the following, we will introduce the
2.5D MST to solve for 3D scattering by clusters of
acoustically rigid cylinders parallel to the ground.

The method will be numerically validated for two
basic cases: (i) a point source above rigid ground,
and (ii) off-axis scattering by a cylinder in free-field.
We further demonstrate some calculation results for
sound propagation through graded index sonic crystal
formations insonified by a monopole source, an infi-
nite incoherent line source, and a finite incoherent line
source.

2. THE MODEL

Sound propagation through an array of infinitely long
cylindrical scatterers located above rigid ground is
considered in a three-dimensional Cartesian space, see
Fig 1. A point source and receiver are placed above
the ground surface, i.e. z ≥ 0. In addition, they are
assumed to be in the exterior region of the scatter-
ers. The longitudinal axes of the cylinders are placed
parallel to the y-axis of the geometry, resulting in
an invariant cross-section of the array along the y-
direction. As such the problem reduces to a so-called
two-and-a-half-dimensional (2.5D) geometry, which
can be solved efficiently [6, 7, 8, 9]. Solving a 3D
problem in a 2.5D geometry utilising 2D solutions
is referred to as a 2.5D method. The crux of this
method lies in applying a Fourier transform of the 3D
Helmholtz equation with respect to one of the spatial
dimensions, here chosen to be the y-direction. What
results is essentially a 2D Helmholtz equation as func-
tion of an effective wavenumber K =

√
k2 − k2y, in

which k =
√
k2x + k2y + k2z . The 3D pressure field may

then be found by applying an inverse Fourier trans-
form over the wave numbers ky.

In this work the 2D solutions are obtained using
the Multiple Scattering Theory (MST) for cylindri-
cal scatterers, see e.g. [10, 11]. The MST method is a

widely used semi-analytical scheme where scattering
by a cluster of non-overlapping infinitely long cylindri-
cal scatterers can be formulated efficiently. Classically,
the modal scattering terms for cylindrical scattering
objects are derived for two-dimensional geometries as-
suming a cylindrical or plane wave source function.
However, these previously derived scattering terms,
together with the MST kernel, may also be used to
obtain the 3D sound field for monopole excitation in
a 2.5D geometry. To do that two main ingredients
are needed: (i) the 2.5D transform as initiated in [6],
and (ii) the Bessel and Hankel functions used in MST
must be substituted with appropriate Modified Bessel
functions when K2 < 0, i.e. for imaginary wave num-
bers. Details about the 2.5D transform and suitable
substitutions for MST when K2 < 0 are discussed
below.

2.1. The 2.5D transform

Assume a monopole source being located at Cartesian
coordinates (xs, ys, zs) and a receiver at (x, y, z). In
this work we seek a solution of the Helmholtz equation
in three-dimensional space which is given by:[

∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

]
p+ k2p

= −4πδ(x− xs)δ(y − ys)δ(z − zs),
(1)

where, p(x, y, z) is the sound pressure. Applying a
Fourier transform of Eq. 1 with respect to the y-
direction one arrives at an equation being equivalent
to the 2D Helmholtz equation [7, 9]:[

∂2

∂x2
+

∂2

∂z2

]
q +K2q = −4πδ(x− xs)δ(z − zs),

(2)

where, K =
√
k2 − k2y, and

q(x, z,K) =

∫ ∞
−∞

p(x, y, z, k)e−iky(ys−y)dy. (3)

The corresponding inverse transform is given by:

p(x, y, z, k) =
1

2π

∫ ∞
−∞

q (x, z,K) eiky(ys−y)dky, (4)

and can be approximated by a finite summation series
as discussed in e.g. [9]. Note that the summation se-
ries as referred to here are based on a modified integral
representation of Eq. 4, which consist of four integra-
tion domains. For details about the 2.5D transform
the reader is referred to e.g. [9].

As reported by several authors, the accuracy of
the 2.5D transform is mainly dependent on two fac-
tors: (i) the choice of the frequency resolution ∆f ,
and (ii) the inclusion of imaginary frequency com-
ponents in the transform. In brief, q(x, z,K) oscil-
lates as function of ky, though more rapidly for larger
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r2D, where r2D is the source receiver distance in a
two-dimensional plane. Hence, to recover these oscil-
lations ∆f must be chosen smaller for larger r2D. Set-
ting ∆f = c0/(5r2D,max), where r2D,max is the max-
imum distance of interest, typically gives a good ac-
curacy at the oscillations [6]. The role of including
imaginary frequency components in the 2.5D trans-
form may be clarified by the point of stationary
phase e.g. described by Salomons [7]. The point of
stationary phase is found at ky = k sin(θ), with
θ = arctan [(y − ys)/r2D], and depicts the region that
has the biggest contribution to the integral in Eq. 4.
Now, when r2d → 0 or K → 0 the point of station-
ary phase tends to a singularity, and hence the in-
clusion of imaginary frequencies becomes increasingly
important. This obviously explains the usually poorer
performance of the transform for low frequencies and
small source to receiver distances.

2.2. The 2.5D MST

As can be concluded from Eq. 4, the 3D pressure for
a given k at receiver (x, y, z) can be obtained by in-
tegrating with respect to ky. Here, the integrand is a
2D function multiplied by a phasor, which for multi-
ple scattering by cylinders is straightforward to obtain
with MST when K2 > 0. For K2 < 0, the Bessel and
Hankel functions used in MST needs special treat-
ment, as will be shown subsequently.

However, we will first briefly introduce the 2D MST
for K2 > 0, after which the substitutions for K2 < 0
follows naturally. Let us formulate acoustic scattering
by an array ofN cylindrical units located above a rigid
ground as detailed in e.g. [12]. We assume that a co-
herent line-source insonifies the array, which is located
above the ground surface, i.e. z ≥ 0. The cylindrical
scatterers are acoustically rigid and are organised in
square lattice, with a lattice constant a. Each cylin-
der has an outer radius rjo and has been given a local
coordinate system (r̂j , θ̂j), where j = 1, ..., N . In or-
der to solve for such a configuration, i.e. an array of
cylinders above rigid ground, the source and cylinders
are mirrored around z = 0, which results in 2N scat-
tering units and an additional image source. We now
have the ingredients to express the total pressure at
any point exterior to the scatterers in a series of Han-
kel and trigonometric functions. When assuming an
e−iωt time-dependence and K2 > 0 we can write:

qo(r, θ,K) = H0(Kr) +H0(Kr′)

+

2N∑
j=1

∞∑
n=−∞

Aj
nZ

j
nHn(Kr̂j) exp(inθ̂j),

(5)

where, Hn(·) is the Hankel function of first kind and
order n, and Aj

n are unknown coefficients. The first
right-hand term of Eq. 5 is recognised as the source-to-
receiver contribution for a source above z = 0 m, the
second term the source-to-receiver contribution for a

source below z= 0 m, and the third term the scattered
field from all cylinders in the domain. In addition,
we introduced the Zj

n terms to capture the boundary
condition of the j-th cylinder which for acoustically
rigid cylinders are given by:

Zj
n =

J
′

n(Krjo)

H ′
n(Krjo)

. (6)

To solve for the unknown Aj
n coefficients in Eq. 5,

the equation system must be expressed in one set of
polar coordinates (r̂j , θ̂j). This is done by using Graf’s
addition theorem for Bessel functions applied to Eq. 5.
Further, using orthogonality of the terms, and fulfill-
ing the boundary for acoustically rigid surfaces leads
to an infinite system of equations:

Apm +

2N∑
j=1
6=p

∞∑
n=−∞

AjnZ
j
ne
i(n−m)ξjpHn−m(KRjp)

= −[Hm(KRp)e
−im(π+ξp) +Hm(KR′p)e

−im(π+ξ′p)],

p = 1, ..., 2N m = 0,±1,±2, ...

(7)

where Rjp = Rjp(cos ξjp, sin ξjp) is the radius vector
from the origin of cylinder j to the origin of cylinder p,
Rp = Rp(cos ξp, sin ξp) is the radius vector from the
source above z = 0 m to the origin of the p-th cylin-
der, and R′p = R′p(cos ξ′p, sin ξ

′
p) is the radius vector

from the source below z = 0 m to the origin of the
p-th cylinder. By truncating in both n and m, and
rewriting Eq.7 in matrix form allows us to solve for
the unknown Aj

n amplitudes. Note that the summa-
tion series has been truncated such that |n|, |m| >
3Kro.

The theory as outlined so far is valid for K2 > 0.
However, when K2 < 0, an appropriate continuation
of the Bessel and Hankel functions used in Eqs. 5 –
7, must be found. Once

√
k2 − k2y becomes imaginary,

the Hankel function should be replaced with the Mod-
ified Bessel function according to:

Hn(iK) =
2

πin+1
Kn(K), (8)

where, Kn(K) is the Modified Bessel function of sec-
ond kind and order n. Similarly, the Bessel function
of first kind must be replaced by an appropriate con-
tinuation, which reads:

Jn(iK) = e
niπ
2 In(K), (9)

where, In(K) is the Modified Bessel function of first
kind and order n. Note that special attention must
be paid to the computation of the Zj

n terms as the
derivatives of the Modified Bessel functions are sub-
jected to sign changes which are different from the
ordinary Bessel and Hankel functions.
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2.3. Numerical validation cases

At this end we have formulated the tools needed to
compute the 3D pressure field for a cross-sectionally
invariant array of cylinders above rigid ground. In or-
der to validate the proposed method we will study
two basic configurations: (i) a point source above rigid
ground, and (ii) off-axis scattering by a cylinder in
free field. For the first case we essentially transform
the pressure of a cylindrical sound source above rigid
ground to a point source above rigid ground. As an-
alytical expressions for both of these source functions
exist this seems an appropriate choice to investigate
the accuracy of the transform. The second case, i.e.
off-axis scattering by a cylinder, will be compared
against a 2.5D BEM code which makes use of the
same transform routine, but uses a different method
to obtain the 2D spectra.

2.3.1. A point source above rigid ground
The solution of Eq. 2 in free-space is known for real
and imaginary values of K and has been presented
in e.g. [9, 7]. It may also be used to formulate an
expression for a cylindrical source above rigid ground
which is given by:

q(x, z,K) ={
iπ [H0(Kr2D,d) +H0(Kr2D,r)] K2 ≥ 0

2 [K0(|K| r2D,d) +K0(|K| r2D,r)] K2 < 0
,

(10)

where, r2D,d =
√

(x− xs)2 + (z − zs)2 is the source to
receiver distance and r2D,r =

√
(x− xs)2 + (z + zs)2

is the distance from image source to receiver.
Let us now investigate the error one will intro-

duce by using the 2.5D transform together with
q(x, z,K) as specified in Eq. 10. The idea is to com-
pare the transformed spectra against the exact so-
lution of a point source above rigid ground which
is given by: p3D = eikr3D,d/r3D,d + eikr3D,r/r3D,r,
in which r3D,r =

√
r22D,r + (y − ys)2, and r3D,d =√

r22D,d + (y − ys)2. Assume a source being located at
(xs, ys, zs) = (−2.5, 0, 0.75) [m], and two receivers at
(xr, yr, zr) = (10, 0, 1.5) and (50, 100, 1.5). We can in-
vestigate the accuracy of the transform by setting ∆f

to 1, 0.5 and 0.25 Hz, and compute the error through
E(k) = 20 log [|p(x, y, z, k)| / |p3D(x, y, z, k)|]. Error
plots for the configurations as described above are de-
picted in Fig. 2. It can be seen that the two finest fre-
quency discretisations give a maximum error of about
0.05 dB, whereas the coarsest frequency discretisation
showcase a maximum error of about 0.5 dB. Further,
we notice the two error maxima at around 1 and 3
kHz in the left panel of Fig. 2. It can be shown that
both peaks correspond to ground interference dips,
and hence a greater error around those frequencies is
expected. In what follows we continue to use a fre-
quency discretisation ∆f = 0.5 Hz.
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Figure 2. Error in the 2.5D transform for a point source
above rigid ground. (a): E for a receiver at (10, 0, 1.5) m,
and (b): E for a receiver at (10, 25, 1.5) m. The frequency
discretisations considered are ∆f = 1 Hz in solid-black, ∆f

= 0.5 Hz in solid-grey, and ∆f = 0.25 Hz in dashed-black.
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Figure 3. Sound pressure level relative to free field [dB].
(a): SPLre.free for a receiver at (5, 0, 0) m, and (b):
SPLre.free for a receiver at (5, 25, 0) m. In addition, we
distinguish the 2.5D BEM in solid grey, the 2.5D MST in
red circles, and the 2D MST in solid black. In the 2.5D
transform we have used ∆f = 0.5 Hz, and fmax = 3 kHz

2.3.2. Off-axis scattering by a cylinder
In the next subsection we will consider on-axis and
off-axis scattering by a cylindrical object in free-
space. The cylinder, with outer radius ro = 0.05 m,
is positioned at (x, z) = (0, 0), a monopole source
at (xs, ys, zs) = (−2.5, 0, 0), and two receivers at
(xr, yr, zr) = (5, 0, 0) and (xr, yr, zr) = (5, 25, 0).
In Fig. 3 the sound pressure level relative to free-
field (SPLre.free) is compared using 2.5D BEM, 2.5D
MST, and 2D MST. The latter is only added for com-
parison reasons. It can be seen that the agreement
between the 2.5D MST and 2.5D BEM is good for
both cases. Although the difference between the 2.5D
methods and the 2D MST for on-axis insonification is
hardly visible, it does exist and manifests itself as a
very small level offset. For the off-axis case we observe
a shift of the complete spectrum to higher frequencies
in a similar fashion as discussed in e.g. [5].

3. RESULTS

In the following section the 2.5D MST is used to study
sound propagation through arrays of cylinders paral-
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lel to the ground. We will use the array cross-sections
as shown in Fig. 4 a–c, which have been taken from
[13]. In that paper, the authors presented an optimi-
sation procedure to maximise the 2D insertion loss of
graded index sonic crystals (GRIN SC) by: (i) organ-
ising cylinders in complex formations, and (ii) intro-
duction of line defects. The optimised structures (we
use the one depicted in Fig. 4 a) were then compared
against: (i) a structure for which the filling fraction
was set to the maximum value as shown in Fig. 4 b,
and (ii) a square reference structure with line defects
as shown in Fig. 4 c. In the following, we refer to
structures A, B, and C, for the structures depicted in
Fig. 4 a–c, respectively. Note that all structures are
1.2 m tall, are organised in square lattice with lattice
constant a = 0.1 m, and have a maximum unit-cell
filling fraction ffmax = 0.4. More details about the
optimisation procedure and 2D calculation results can
be found in [13]. Next, we will investigate the inser-
tion loss (IL) of these structures for off-axis placed
monopoles, finite incoherent line sources, and infinite
incoherent line sources.

The complex pressure due to a monopole can be
found through Eq. 4, whereas the pressure due to a
finite incoherent line source is obtained by energetic
summation of a series of monopoles distributed along
a common line parallel to the y-axis. In case of an in-
finite incoherent line source the mean square pressure
along the y-axis is invariant and may be obtained by
[6]:

p̃2(x, z, k) =
1

2π

∫ ∞
−∞

∣∣∣q (x, z,√k2 − k2y)∣∣∣2 dky. (11)
Let us now investigate the insertion loss (IL) due

to a monopole as function of source receiver angle φ,
which is defined in the x− y plane. The source is as-
sumed to be located at (xs, ys, zs) = (−2.5, 0, 0.01),
whereas the receiver is placed at (20, yr, 1.5), with
yr defined through φ. Letting, φ = 0, 37.5, and 75◦,
gives yr = 0, 17.3, and 84 m, respectively. Insertion
losses as function of φ are shown in Fig. 4: d–f, and
correspond to structures A – C, respectively. It can be
seen that by increasing φ the characteristic response
shifts up in frequency for all studied cases. This phe-
nomenon has been previously reported for oblique in-
cident plane waves impinging on infinitely long tube
bundles [5], and is sometimes referred to as a projec-
tion effect. The whole (insertion loss) spectrum for
acoustically rigid scatterers shifts approximately ac-
cording to f(φ) ≈ f/ cosφ. As such, one can get an
estimate of the insertion loss spectra for 2.5D geome-
tries without implementing the actual 2.5D transform.

The insertion losses of structures A – C insonified
by an infinite incoherent line source are presented in
Fig. 4:g. It can be seen that the frequency response
looks much different from those presented in Fig. 4:d–
f, as rapid oscillations are suppressed due to spec-
tral smearing. Furthermore, we may observe that all
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Figure 5. Insertion loss [dB] for finite incoherent line
sources of various lengths. The receiver is placed in the
centre of the finite incoherent line source at (20, 0, 1.5) m.
(a): IL for structure A, (b): IL for structure B. In addi-
tion, we distinguish the φ = 37.5◦ in solid, black, φ = 75◦

in solid, grey, and φ = 90◦ in dashed, red.

studied structures exhibit an IL increase between 250
— 2000 kHz, whereas the onset of noise reduction
depends on the specific structure. The pass-band at
around 2.5 kHz (for on-axis insonification) manifests
itself as a dip in the spectrum, but it is clearly less
pronounced than in 2D.

The insertion loss spectra as shown in Fig. 4:g cor-
respond to a rather extreme case of an infinite road.
More realistically, we assume that the barrier remains
infinite, whereas the line source is considered to be fi-
nite in length and incoherent. Such a source can be
modelled by a series of uncorrelated monopoles, dis-
tributed along a common line parallel to the y-axis.
With a fine enough source separation dys, i.e. the ge-
ometrical spacing between the individual monopoles,
this can be modelled accurately. When a receiver is
positioned in the centre of the finite line source only
one half of the source needs to be modelled. As such
we distribute a series of monopole sources between
0.5dys and ys = tanφ × |xs − xr|, with dys = 1 m.
Insertion loss spectra of the structures A and B, in-
sonified by a finite incoherent line source as obtained
by setting φ = 37.5, 75, and 90◦, are presented in Fig.
5. It can be seen that a distinct pass-stop pattern re-
mains for the shortest finite line source studied. How-
ever, further increasing the length of the line source
results in convergence towards an infinite incoherent
line source, as one would expect.

4. Discussion and Conclusions

To study sound propagation through arrays of cylin-
ders parallel to rigid ground the two-and-a-half-
dimensional multiple scattering theory (2.5D MST)
has been introduced. The proposed method was nu-
merically validated for: (i) a point source above rigid
ground, and (ii) off-axis scattering by a cylinder in
free-field. For both cases the 2.5D MST was shown to
be in excellent agreement with the respective refer-
ence method, provided that the frequency resolution
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Figure 4. (a – c): Illustration of structures A (left), B (middle), and C (right), and (d – f): narrowband IL [dB] as
function of source-receiver angle φ. We can distinguish: φ = 0◦ in black, φ = 37.5◦ in dark grey, and φ = 75◦ in light
grey. (g): Narrowband IL [dB] for an infinite incoherent line source and a receiver at (20, 0, 1.5) m. We have: structure
A in black crosses, B in blue circles, and C in red squares.

of the numerical integration procedure was chosen fine
enough. Further, it has been shown that off-axis in-
sonifaction of an array of cylinders parallel to rigid
ground will shift the characteristic response to higher
frequencies, which is due to a projection effect which
has been reported earlier in [5]. In addition, we studied
incoherent line sources of finite or infinite length, and
found that both these source types introduce a spec-
tral smearing effect. In conclusion, it has been shown
that the modelled source type has a strong influence
on the noise reducing performance of these structures,
and certainly has to be considered when noise control
of surface transport noise is of interest.
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