
 

 

 

 

 

 

 

 

 

 

 

 Plate mode identification using modal analysis
based on microphone array measurements
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Summary
The goal of this study is to investigate the possibilities of identifying the modal properties of plate-like
structures by applying modal analysis on acoustic pressure measurements using a microphone array.
Since this is a contact-less measurement method, the dynamic response of the system is not affected
by the measurement. The modal properties are determined by using the rational fraction polynomial
method (RFP), which is an indirect frequency domain modal analysis method. Two measurement
techniques are compared; (1) measurements with accelerometers and (2) with a microphone array.
Using planar near-field acoustic holography (PNAH), the displacement field of the vibrating source
is calculated from the pressure data captured with the microphone array. The receptance frequency
response functions are determined from the displacement field. The measurements are performed
on a free plate. The pressure is captured in the near-field of the plate. The aperture of the micro-
phone array is larger than the plate dimensions. The frequency domain of interest is 0 - 1500 Hz
which contains the first four resonance frequencies of the plate. Modal analysis based on acceleration
measurements give good results, all modal properties are obtained very well. The eigenfrequencies
resulting from the modal analysis based on PNAH are comparable to the eigenfrequencies obtained
using the accelerometers. The mode shapes are clearly visible in the from the acoustic pressure recon-
structed displacement field. However, the mode shapes identified by modal analysis are not accurate.
A possible reason is the limited quality of the reconstruction of the drive point frequency response
function.

PACS no. 43.60.Fg, 43.60.Sx

1. Introduction

Unwanted vibrations cause, among others, noise and
wear. These vibrations can be captured in a modal
model which describes the dynamic response of the
system. This modal model can be used to control
the vibrations, design structures, evaluate dynamics,
develop experimental based models, et cetera. The
modal properties of a structure are needed to compose
its modal model. In this paper the possibilities of iden-
tifying the modal properties of plate-like structures
by applying modal analysis on acoustic pressure mea-
surements using a microphone array and planar near-
field acoustic holography (PNAH) is investigated.

PNAH is a method to localize sound sources [1].
Pressure is measured in the near-field of the expected
source. This is done with a microphone array which
contains a high number of microphones. The acous-
tic information at the sensor plane is typically trans-
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formed to acoustic vibration or other acoustic quanti-
ties to a location near or on the source. This transfor-
mation is performed in the wave number domain by
solving an inverse problem. This problem is ill-posed
due to the existence of decaying, evanescent waves.
Regularization is used to overcome this problem [2].

The measurements are contact-less which makes it
interesting to use for identification purposes. Prezelj
et al. identified the mode shapes of a completely free
plate [3]. It is shown that the reconstructed source ve-
locity field from the acoustic pressure measurements is
different to the velocity field when measured directly.
The amplitude of the acoustic pressure and the re-
constructed velocity field is low at the edges due to a
short-circuit effect. A similar result is shown by J.L.
Potter et al. [4]. In this work, modal analysis is per-
formed on measurement data obtained from a micro-
phone array and compared with measurement data
from a laser vibrometer.

In this paper, the normal plate velocity is retrieved
by Fourier based PNAH. The result of frequency re-
sponse functions (FRFs) and the modal analysis are
compared with those obtained with accelerometers.
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The analysis is applied to a completely free rectan-
gular plate, which mode shapes and eigenfrequencies
are described by A.W. Leissa [5, p. 87].

2. Modal analysis method

The response of a structure to a point force can be de-
scribed by modal superposition [6]. Consider a plate
with mode shapes φr(x, y) for the corresponding an-
gular eigenfrequencies ωr. Assume viscous damping
with the resulting modal damping ratios ζr, then the
transverse displacement η is given by:

η(x, y, t) =
∞∑
r=1

F̃

Mr

φr(x, y)φr(xf , yf )

ω2
r − ω2 + 2iζrωrω

eiωt, (1)

for a harmonic force with amplitude F̃ at position
(xf , yf ), generalized mass Mr and angular frequency
ω for all modes r. Modal analysis is used to find the
modal properties (φr, ωr, ζr) in the modal model
given in (1). This is done by fitting frequency re-
sponse functions (FRFs) obtained with modal testing.
Since the result of PNAH is in the frequency domain
a frequency domain method is used. In this study the
rational fraction polynomial method (RFP) is used,
which is a multiple-degree of freedom method. This
method makes use of complex orthogonal polynomi-
als to fit the partial fraction form of the receptance
FRF [7]:

α(ω) =
N∑
r=1

Ar + iωBr

ω2
r − ω2 + i2ζrωrω

, (2)

where Ar and Br are the modal constants, ωr is the
frequency of mode r, ζr is the damping ratio of mode
r and N is the total number of modes included in
the model. This partial fraction form can also be ex-
pressed in terms of the ratio between two complex
orthogonal polynomials ϕ and θ:

α(ω) =

2N−1∑
k=0

ckϕk

2N∑
k=0

dkθk

, (3)

with ck and dk the polynomial coefficients [6].
The coefficients are obtained by minimizing a differ-

ence function. The error is defined as the difference be-
tween the fit, α(ω), and the measurement data, α̃(ω),
which is minimized for each frequency ωl

el = α(ωl)− α̃(ωl) =

2N−1∑
k=0

ckϕ
+
l,k

2N∑
k=0

dkθ
+
l,k

− α̃(ωl). (4)

The difference function el is not linear in its unknown
parameters. To get a linear system of equations, the

function el is modified by multiplying with the denom-

inator term
2N∑
k=0

dkθ
+
i,k and by making last coefficient

of denominator polynomial equal to one, d2N = 1

el′ = el

2N∑
k=0

dkθ
+
i,k

=

2N−1∑
k=0

ckϕ
+
l,k − α̃(ωl)

(
2N−1∑
k=0

dkθ
+
l,k + θ+l,2N

)
.

(5)

2.1. Modal property extraction

To find the modal properties, the fitted polynomials in
terms of complex othogonal polynomials, as in (3), are
transformed into ordinary polynomials, which results
in (6):

α(ω) =

2N−1∑
k=0

ak(iω)
k

2N∑
k=0

bk(iω)k
. (6)

This transformation is described in [6, p. 245]. The
problem is not directly solved for ordinary polynomi-
als, because the orthogonal properties of the orthog-
onal polynomials are used to simplify the problem,
[6]. After the transformation, the modal properties of
the system can be found by writing the system in the
partial fraction form:

α(ω) =
2N∑
k=0

zk
iω − pk

, (7)

in which the poles, pk, follow from the roots of the
denominator polynomial of (6), and in which zk are
the residues.

2.1.1. Eigenfrequencies and damping ratios
Combining (6) and (2), it can be found that the poles
equal pk = −ωrζr + iωr

√
1− ζ2r . Thus the eigenfre-

quency equals ωr = |pr| and the damping ratio equals
ζr = − |pr|

Re(pr)
[8].

2.1.2. Mode shapes
The modal constants or mode shapes follow from writ-
ing each FRF in the partial fraction form, as given in
(2). From which rCjk = Ar + iωBr can be found,
which is the modal constant for mode r measured at
position j with an excitation at position k. This modal
constant is the numerator term of (7). The modal con-
stant can also be written in terms of mode shapes:
rCjk = φjrφkr. In which rCjk is the modal constant
for mode r measured at position j with an excitation
at position k. Thus, at a drive point measurement,
the modal constant equals rCkk = φkrφkr. Which
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means that the mode shape element of the column
corresponding to the mode shape of mode r at each
response point can only be retrieved when the set of
measurements contains a drive-point measurement

φkr =
√

rCkk (8)

φjr =
rCjk

φkr
(9)

Combining the modal constants for one mode of all
response points, results in the mode shape of mode r.

Since the eigenfrequencies and the damping ratios
are global properties, these should be constant for a
structure. When multiple FRFs measured from one
structure are fitted, the obtained eigenfrequencies and
damping ratios can be averaged to find the global val-
ues. The mode shapes are local properties.

3. Planar near-field acoustic hologra-
phy

Using the Fourier based method, PNAH, it is possible
to find the relationship between the acoustic pressure
in a plane at a certain distance and the velocity at the
source plane p(x, y, zh) ⇒ η̇(x, y, zs):

η̇(x, y, zs) =

F−1
x F−1

y

[
FxFy[p(x, y, zh)]

kz
ρ0ck

ejkz(zs−zh)

]
, (10)

where Fx is the spatial Fourier transform and F−1
x is

its inverse, kz is the z-component of the wavenumber
of the acoustic wave, ρ0 and c are the mass density
and the speed of sound respectively of the medium
around the structure, in this study air is used.

When zh > zs the source velocity field is ob-
tained by solving an inverse problem, this method
is called PNAH. In practical measurement situations
additional preconditioning is required to optimize the
discretization in (10). This includes an extrapolation
in the (x − y) directions of the microphone data
to larger aperture and applying a spatial window.
Further regularization in wavenumber domain is ap-
plied to overcome blow-up of noise in the inverse
propagation step [2]. The steps to find the parti-
cle velocity in the source plane are: (1) measure the
acoustic pressure, (2) calculate the spatial-frequency
spectrum, (3) calculate wavenumber-frequency spec-
trum, (4) calculate and apply the velocity propagator,
G(kx, ky, zs−zh) =

kz

ρ0ck
ejkz(zs−zh) and (5) determine

spatial velocity field η̇. For more details about the
implementation see [9].

4. Measurements

To identify a structure, receptance FRFs are mea-
sured. An impact is applied and the response is mea-

Figure 1. Overview of the measurements (green) and pro-
cessing (red). Plate excited by force in the z-direction,
fz. Pressure, p, measured with microphone array at zh
and acceleration, η̈, measured at position zs. Using PNAH
the velocity field at the source, zs, is reconstructed. Using
modal analysis the modal properties are substracted from
the FRFs.

sured with two separate types of sensors: (1) using ac-
celerometers and (2) using a microphone array. The
two procedures are shown schematically in Figure 1.

4.1. Measurement setup

The measurements are performed on a rectangular
aluminum plate with dimensions 300× 200× 10 mm.
The plate is supported in a frame with cord at the
top corners to achieve free boundary conditions. The
plate is excited with an impact hammer and the re-
sponse is measured with accelerometers or with a mi-
crophone array. The accelerometers measure the ac-
celeration direct on the plate, while the microphone
array measures the acoustic pressure at a distance
of 30 mm from the plate. Three accelerometers are
moved to measure at 18 positions, including the drive
point. The array consists of 1024 MEMS microphones
(32 × 32), with a spacing of 20 mm and has a total
measurement surface of 640 × 640 mm. The micro-
phones are aligned with the accelerometer positions.

4.2. Data acquisition and signal processing

The acceleration measurements are performed with a
Siglab data acquisition system. A bandwidth of 2000
Hz, a sampling frequency of 5120 Hz and a measure-
ment time of 1.6 seconds is used. The measurements
are windowed: a rectangular window is used for the
force signal and an exponential window for the accel-
eration response signal. A total of 12 sets is measured
from which the receptance FRFs are determined and
finally averaged.

The measurements with microphones are performed
using the array in combination with the Sorama DAQ
which has a sampling frequency of fs = 46875 Hz. A
total of two seconds is captured, afterwards the data
is manually triggered. This results in a measurement
time of 1.16 seconds. The time signals from the ar-
ray are windowed with a Hanning window. The force
signal is windowed with a rectangular window. Af-
ter windowing and calculating the frequency spectrum
the pressure field is border padded, [10] using linear
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Figure 2. The plate with the three positions which are an-
alyzed here: drive point (E), sensor (5) near edge, sensor
(8) near center. At the right the orientation of the micro-
phone array with respect to the plate is indicated.

Table I. Location resonant peaks for both measurement
methods and the analytic eigenfrequencies [11].

n Blevins Acc. fn [Hz] Mics. fn [Hz]

1 570 518 519
2 598 579 580
3 1291 1193 1203
4 1392 1356 1358

predictive border padding and a modified exponential
wave number domain filter is applied, as described in
[9]. To simplify processing it is chosen to take the filter
cut-off wave number kco constant over the frequency
range of interest: kco = 45 rad/s and a slope of 0.1.
Then, using PNAH the receptance FRFs are calcu-
lated. A total of 9 data sets are gathered and averaged
and a frequency range of 350-1500 Hz is analyzed.

5. Analysis of the results

From the acceleration measurements, the FRFs can be
determined directly. While, from the acoustic pressure
measurements, the FRFs follow from an additional
step: PNAH as explained in section 3.

5.1. Analysis and comparison of modal test-
ing results

The receptance FRFs are determined for all accelera-
tion positions and the microphones corresponding to
these positions. To illustrate the difference in data
quality, three FRFs are shown in Figure 3 for both
measurement methods. It contains the drive point, a
position near the edge and near the center. These po-
sitions are indicated in Figure 2.

The resonance peaks can be compared using figure
2. The frequency of the resonant peaks and the the-
oretical values are shown in Table I. The resonance
peaks are located at similar frequencies for both sets
of FRFs. The peaks, however, differ from the analytic
eigenfrequencies of Blevins [11], this can be caused by
the fact that the plate is not perfectly cut and that
the material properties are different.
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Figure 3. The receptance FRFs for three different sensor
positions compared for both measurement methods. From
top to bottom: Drive point (E), sensor (5) near edge, sen-
sor (8) near center.

A microphone positioned above a source does mea-
sure the contribution of vibrations of the plate around
this point. This could explain why the anti-resonances
are not reconstructed as good as in the FRFs of the
acceleration measurements. Especially the anti res-
onance between the second and the third mode is
missing in the microphone data. Small differences in
anti resonances were expected due to possible mis-
alignment errors between the array and the sensor
positions on the plate. Furthermore, low vibrations
are difficult to measure because the radiated acoustic
pressure drops below the signal to noise ratio.

The overall amplitude of the drive-point FRF and
of the FRF from sensor position 8 are similar for both
measurement methods. A difference can be seen for
sensor position 5. The amplitude of the microphone
FRFs is lower for the whole frequency domain. This
can be explained by the distance to the edge of sensor
position 5, which is only 20 mm. The amplitude of
the pressure is low at the edges due to a short-circuit
effect. This effect was also shown by [4, 3]. Further-
more, the amplitude of the FRFs are influenced by
the filters applied in PNAH.

The FRFs of the remaining 15 positions are not
shown in this paper. Similar remarks hold for these
concerning their location and quality of FRF.

5.2. Analysis and comparison of modal anal-
ysis results

The obtained FRFs are fitted using the RFP method.
The used modal analysis inputs are shown in Table
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Table II. In this table all inputs for the modal analysis
applied to the measurements on the plate are summed.
With N the number of modes fitted, [fmin-fmax] Hz the
frequency domain of the fit and the mode numbers that
are fitted.

Acceleration measurements

N fmin fmax fitted modes

8 347 1437 1 – 4

Microphone measurements

N fmin fmax modes

1 484 555 1
3 555 618 2
1 1156 1246 3
1 1246 1425 4

II. The first four modes of the acceleration measure-
ments are fitted at once. The microphone measure-
ments are fitted separately because this gave better
results which might be caused by that the FRFs do not
contain anti-resonances. The output of RFP method
are the averaged N eigenfrequencies and damping ra-
tios, and 18×N modal amplitudes. The maximum fit-
ting error (RMS error) of all measurements is in the
order of 10−8 m/N.

5.2.1. Eigenfrequencies and damping ratios

The obtained (global) eigenfrequencies and damp-
ing ratios and the standard deviations are listed in
Table III. The eigenfrequencies from the accelerom-
eters have a high accuracy (standard deviation of
σ < 0.2%) for all modes. The fit of the microphone
measurements is less accurate for the first two modes
(σ1 = 2.7% and σ2 = 1.2%). The third and fourth
mode have also a high accuracy (σ < 0.2%). The dif-
ference can be explained by the difference between the
FRFs obtained for both methods. Besides, the accu-
racy might also differ since the modes are fitted in two
different ways. Furthermore, the fourth and the third
mode are above the coincidence frequency of the plate
which means that these modes are expected to radi-
ate more efficiently. The reconstruction of the velocity
field is more accurate which will give better FRFs for
the frequency domain above coincidence.

Almost all obtained damping constants have a stan-
dard deviation which is higher then the damping ra-
tio itself or are negative. These damping ratios are
thus inaccurate due to the large variation between
the damping ratio before averaging to find the global
damping ratios. The authors do not have an expla-
nation for these large deviations. The fit error of the
RFP method, as in (5), is weighted by the denomina-
tor of the FRF. The data away from the resonances is
weighted more than at the resonances [12]. This might

Figure 4. Mode shapes obtained using modal analysis for
both measurement methods. The first column shows the
analytic mode shapes of the first four modes, the second
and third column are the mode shapes from the accelera-
tion and the microphone measurements respectively. The
drive point is indicated with a larger black dot.

be an explanation for the poor reconstruction of the
damping ratios.

5.2.2. Mode shapes
The obtained mode shapes are shown in Figure 4.
The blue dots are the sensor positions. Between these
points, the mode shape is interpolated using a thin
plate spline interpolation method [13]. The mode
shapes obtained from the acceleration measurements
agree with the analytic mode shapes.

The velocity reconstructions, from the microphone
measurements, at the resonances show the expected
mode shapes clearly, see Figure 5. However, at the
edges the amplitude is reduced. This will influence
the modal analysis results. The drive-point FRF is
of high influence on the mode shapes. A drive point
FRF should contain all modes. Also, it is important
that this FRF is of high accuracy because of its in-
fluence on the total mode shape, as indicated in (9).
As it can be seen in Figure 3, the drive point FRFs
does not have an anti-resonance after each peak. The
found modal constants and the mode shapes calcu-
lated from the array measurements are not correct,
as can be seen in the third column of Figure 4. The
found mode shapes are not comparable to the mode
shapes which are visible in the velocity reconstruc-
tion. The mode shapes found using modal analysis
based on microphone measurements are not correct
while the shapes were visible in the velocity field re-
constructions and the mode shapes determined using
modal analysis based on acceleration measurements
have small differences with the analytic mode shapes.
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Table III. Modal analysis results for both measurement methods: eigenfrequencies fn [Hz] and damping ratios ζn [-] with
standard deviation σ.

Accelerometers Microphones

mode fn [Hz] σ [Hz] ζn [-] σ [-] fn [Hz] σ [Hz] ζn [-] σ [-]

1 519 0.23 0.0022 0.0077 516 13.9 -0.0075 0.0257
2 578 0.90 0.0010 0.0001 582 6.9 -0.0081 0.0341
3 1198 5.4 -0.0060 0.0072 1202 2.8 0.0005 0.0125
4 1320 5.5 0.0330 0.0836 1358 0.4 0.0002 0.0004

Figure 5. The reconstructions of the velocity field at the
resonances, the mode shapes are clearly visible. The shown
FRF is from sensor position 5.

6. CONCLUSIONS

The obtained frequency response functions based on
accelerometer data and using PNAH on the pressure
field reconstructed velocity are compared. The same
resonance frequencies are found. However, since the
microphone array measures the plate vibration indi-
rectly and low vibrations are difficult to measure be-
cause the radiated acoustic pressure drops below the
noise floor of the array, the anti-resonances are not
observed as clearly as in the FRFs of the accelera-
tion measurements. Furthermore, the FRFs resulting
from the microphones at the edge of the plate have
a lower amplitude than the FRF based on accelera-
tion at the same location. This can be explained by
hydrodynamical short-circuit.

For both methods, the modal analysis using the
RFP method resulted in accurate identification of the
eigenfrequencies. The obtained damping ratios are not
accurate, the standard deviation is for some modes
above 100%. The mode shapes identified from the
acceleration measurements agreed with the analytic
mode shapes. Although, at resonance frequencies the
mode shapes can be clearly recognized in the with
PNAH reconstructed displacement field, the obtained
mode shapes are not comparable to the analytical
mode shapes.

Based on the measurements and the comparison of
the two methods it can be concluded that by apply-
ing modal analysis on acoustic pressure measurements
for the low frequency domain the eigenfrequencies of

a plate-like structure can be identified with a high
accuracy. Identification of the mode shapes and the
damping constants are shown not to be accurate. Fur-
ther research is needed to investigate the influence of a
different damping model or modal analysis method to
improve the identifying the modal properties of plate-
like structures using a PNAH based velocity recon-
struction.
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