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Summary
A flexible plate and an internal resonating lattice are combined in an assembly which is characterized
by high damping performance and tuned vibration attenuation at low frequencies.
The resonating lattice consists of an elastomeric frame equipped with a metallic inclusion which
is designed to resonate at selected frequencies. The system achieves high damping performance by
combining the frequency-selective properties of internally resonating structures, with the energy dis-
sipation characteristics of their constituent material.
Furthermore, tuning and modifying the layout of the resonant lattice allows for tailoring of the
resonating properties so that vibration attenuation is obtained over desired frequency ranges. Exper-
imental results show the performances of the resonant assembly and suggest its potential application
in vibrations and noise reduction.

PACS no. xx.xx.Nn, xx.xx.Nn

1. Introduction

Over the last decades, research on effective methods
for suppressing noise and vibration levels has been
performed both in the automotive and the aircraft in-
dustry [3]. The control of the radiated noise due to the
coupling between the vibration of the flexible bound-
ary of the considered structure and the motion of the
surrounding fluid is one of the major concerns.
Increasing customer demand for improved comfort en-
vironments have prompted researchers into investi-
gating innovative techniques to reduce noise levels.
Lightweight solutions are needed which can provide
global broadband noise control without compromising
vehicle performance and efficiency. It is acknowledged
that classical passive solutions such as acoustic blan-
kets add considerable weight and are effective only at
high frequencies.
For this reason a different passive strategy for vibra-
tion mitigation and noise suppression has been pro-
posed with the aim to improve the control capabilities
of the overall structure in the low frequency regime.
This technique is based on the use of locally resonat-
ing structures embedded in an elastic plate.
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In the literature it is possible to find numerous exam-
ples that clearly show the advantages associated to
the use of non-conventional materials for the design
of structures with outstanding vibro-acoustic proper-
ties. This is the case of composites featuring a nega-
tive stiffness phase, which can provide extreme levels
of stiffness and damping [6]. In addition, the exploita-
tion of structural effects such as topology, geometry
and local resonances has led to the development of
material systems with extraordinary electromagnetic
and acoustic properties as in the case of metamateri-
als [4]. In acoustic metamaterials specifically, locally
resonant phases lead to strong attenuation which is
directly associated to exceptional reduction in sound
transmission [2] and vibration mitigation [7].
This concept has been explored for structural bars and
beams whose internally resonant behavior is the result
of their coupling with periodically spaced spring-mass
resonator arrays [9]. An attenuation band is gener-
ated at the resonance frequency of spring-mass ab-
sorbers connected to a primary structure. The results
in [10] also show that the attenuation bandwidth can
be expanded by tuning the various resonators at dif-
ferent frequencies within a range of interest, which
suggests the potential of resonance grading as an ef-
fective strategy for broadband vibration control.
Confinement of vibrations has also been demonstrated
for 2D periodic configurations. For example, inertial
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amplification is exploited in [11] for low frequency ef-
fectiveness with limited mass penalties. An interest-
ing analysis of periodic structures is presented in [5],
where various kinds of waves that can propagate in
the structure are discussed and the effect of local res-
onances of the lattice is illustrated.
This paper applies the concept of internally reso-
nant structures to provide a plate assembly with high
damping performance and noise suppression at se-
lected frequencies bands. The system achieves high
damping performance by combining the frequency-
selective properties of internally resonating struc-
tures, with the energy dissipation characteristics of
their constituent material. With this paradigm it is
therefore possible to improve the acoustic properties
of the plate by only modifying the properties of the
embedded lattice thus avoiding to degrade the vibro-
acoustic properties of the primary structure.
The embedded lattice is a multi-degree of freedom
structure consisting on a set of flexible structures pe-
riodically arranged over the surface of the plate. The
lattice is characterized by frequency band-gaps in dif-
ferent frequency ranges, which can be conveniently
tuned through the selection of the characteristic pa-
rameters of the lattice. There is a number of such
parameters that define the lattice lay-out so that tun-
ability of the dynamic behavior can lead to attenua-
tion over desired ranges of frequency.
Following this introduction, the paper describes the
considered concepts for vibration attenuation in Sec-
tion 2, while their implementation and design in a
plate-like assembly are presented in Section 3. Sec-
tion 4 presents preliminary experimental results as-
sociated to the fully coupled system consisting in a
finite-extent plate equipped with a resonant units.
Conclusions and recommendations for future inves-
tigations are provided in Section 5.

2. Plate with resonant inclusions

The structure considered in this work is a plate
equipped with a finite number of resonant inclusions
periodically arranged over a portion of the plate. The
primary structure is made of aluminum, the resonant
unit composed by a two ligaments frame attached
to an hollow cylinder containing one cylinder made
respectively of liquid silicone rubber and steel. The
mechanical properties of each component are summa-
rized for convenience in Table I.
The cylinder has a diameter of 10 mm with a height
of 10 mm.
By properly selecting the dynamic properties of the
resonant unit it is possible to suppress the response
of the primary structure at selected frequencies.
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Figure 1. Unit cell of the assembly: plate + resonant unit.
All dimensions in mm.

3. Wave propagation in two-
dimensional periodic structures

By assuming that the resonant behavior of the peri-
odic lattice is not heavily influenced by the boundary
condition of the finite structure is thus possible to re-
strain the study of the composite structure to the sole
periodic lattice attached to the plate and arranged
along the x and y direction as depicted in Figure 1.
Wave propagation in the resulting 2D periodic struc-
ture is investigated through the analysis of a unit
cell and the application of the Bloch theorem [1]. A
schematic of the considered plate configuration and
associated unit cell is shown in Figure 1.
The motion of the periodic domain, according to

Bloch’s theorem, may be expressed as follows:

u (r,n) = eµ·ru0 (1)

where u denotes the generalized displacement of point
r belonging to the cell at location n within the assem-
bly.
The displacement u0 describes the generalized dis-
placements of a single cell while µ = [µx, µy] is the
vector of the propagation constants. The propaga-
tion constants are complex numbers µi = δi + iεi
whose real and imaginary parts denote attenuation
and phase constants, respectively. The propagation
constants are equal to the wave-number component ki
in the direction of wave propagation, multiplied by the
spatial period of the domain in the corresponding di-
rection and therefore they are non-dimensional quan-
tities. They describe the nature of elastic waves prop-
agating in the 2D periodic structure: purely imaginary
propagation constants correspond to waves which are
free to propagate, while the existence of a real part
indicates that amplitude attenuation occurs as elastic
waves propagate from one cell to the next.
The behavior of the unit cell can be conveniently de-
scribed through a discretized equation of motion.
A general formulation for the cell’s equation of motion
can be expressed as:

KD (ω)d = f . (2)
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Table I. Physical properties of the assembly.

Steel Liquid Silicone Rubber Aluminum

Young’s modulus 210 GPa 2 MPa 70 GPa
Poisson’s ratio 0.33 0.4 0.33
Mass density 7850 kg/m3 1100 kg/m3 2700 kg/m3

where KD is the dynamic stiffness matrix of the cell.
In Equation (2) d and f are, respectively, vectors of
generalized nodal displacements of the cell and asso-
ciated forces:

d = [dL dR dT dB dLB dLT dRB dRT dI ]
f = [fL fR fT fB fLB fLT fRB fRT fI ]

(3)

where dI and fI denote the generalized displacements
and forces internal to the unit cell.
Imposing periodicity conditions on the generalized
displacements and equilibrium conditions on the gen-
eralized forces yields:

dR = eµxdL fR = −eµxfL
dT = eµydB fT = −eµy fB
dLT = eµydLB fLT = −eµy fLB
dRB = eµxdLB fRB = −eµxfLB
dRT = eµx+µydLB fRT = −eµx+µy fLB

(4)

Equations (4) can be rewritten in the following matrix
form:

d = Adr f = Bfr (5)

where dr and fr are the reduced vector of nodal dis-
placements and nodal forces.
Substituting Equation (4) into Equation (2) , premul-
tiplying the resulting Equations for its complex con-
jugate transpose AH and assuming fI = 0 gives:

Kr
D (k, f)dr = 0, (6)

where Kr
D is the reduced dynamic stiffness matrix.

Equation (6) is an eigenvalue problem whose solution
depends on the wavenumber k.
The approach used to evaluate the dispersion rela-
tion of the two-dimensional periodic domain consists
in setting the attenuation part of the propagation con-
stants to zero and varying the wavenumber ki in the
first Brillouin zone.
By solving the eigenvalue problem (6) with respect to
frequency for a specific combinations of kx and ky in
the considered range yields a set of functions

f = f (kx, ky) , (7)

which are known as phase constant surfaces and rep-
resent the dispersion characteristics of the domain.
The phase constant surfaces are 2D representations
of the dispersion relations for the considered periodic
domain and provide a wealth of information on the

dynamics of propagating waves. Frequency gaps be-
tween subsequent surfaces correspond to attenuation
in all directions and therefore identify the stop bands
or band gaps, typical of all periodic structures. This
approach is very convenient since it allows to calcu-
late the dispersion relation of the wave-guide along a
given direction by just specifying the module of the
wave-numbers k and the angle of propagation θ and
solving for the frequency f . The components of the
wavenumber kx and ky are related to k and θ through
the following simple relation

kx = k cos (θ) ,
ky = k sin (θ) .

(8)

In case of fully reactive systems the solution of the
associated eigenvalue problem is particularly simple
since each terms in the matrix Kr

D are linear.
The presence of band-gaps can be highlighted by cal-
culating the group velocity of the propagating waves
[8].
The group velocity vector is given by

Cg = ∇kω =
I

Etot
, (9)

where I is the intensity vector

I = −1

2
Re
(∫

Ω
σ · u∗t

)
dV, (10)

and Etot the total energy

Etot =
1

4

∫
Ω
(ρu∗t · ut + ε∗ · σ) dV. (11)

Results for the first configuration are presented in Fig-
ure 2, which show the variation of the wavenumber kx
over the 0-700 Hz range. The results obtained with the
plate equipped with lattice of resonant units are com-
pared with the case of bare plate which is considered
the reference configuration. The wavenumber along
the x direction show the presence of several frequency
bands where waves can not propagate. The controlled
configuration, represented by a red line, features three
band-gaps centered at 66, 110 and 300 Hz. The third
band gap presents a very interesting feature, the pres-
ence a two close modes of the frame that interact
with the primary structure originating two band gaps
that coalesce in a wider single band gap. To help the
reader, each band-gap has been highlighted with a col-
ored box. The presence of this attenuation band can
be attributed to the impedance mismatch generated
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Figure 2. Dispersion relation and group velocity of the resonant unit (2 ligament LSR frame): bare plate (black dots),
plate+ RU (red dot). In this simulation the thickness of the plate is 1 mm.

by the added mass and stiffness of the resonant unit.
By calculating the group velocity it is possible to lo-
calize the position and better estimate the wideness
of the band-gaps as clearly shown in Figure 2, band-
gaps occur when the group velocity goes to zero. This
fact is easily understood if one consider the classical
representation of the group velocity

Cg =
dω

dk
, (12)

only valid for conservative systems. In correspondence
of zero group velocity the dispersion relation becomes
a straight line orthogonal to the frequency axis which
is consistent with the results depicted in Figure 2.

4. Experimental Results

Experimental investigations are performed on a plate
equipped with a single resonant unit. The plate is ex-
cited by a random signal in the 0-5000 Hz frequency
band by mean of a shaker placed in the lower corner
of the plate. The out-of-plane motion is measured by
an accelerometer located in the opposite corner of the
plate. The input and the output signal are acquired

signal analyser

power
amplifier

signal conditioning

shaker
Figure 3. Sketch of the experimental apparatus.

and processed by a SigLab measurement system as
depicted in Figure 3.
In Figure 4 the frequency response function of the as-
sembly is compared to the response of the bare plate
in the 0-500 Hz frequency band. By comparison it
is evident that the addition of the resonant inclusion
determine a visible modification in the dynamic of
the system especially in the 50-100 Hz range. This
results is consistent with the calculations performed
in Section 3. In this frequency band the part of the
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Figure 4. FRF of the assembly in the 0-500 Hz frequency
band: bare plate (black solid line), plate + rubber frame
+ inclusion (red solid line) and plate + rubber frame (red
dotted line)

kinetic energy of the assembly is confined in the reso-
nant unit. Moreover, it is important to point out that
the rubber frame itself does not affect the dynamic of
the assembly, a small shift of the resonant frequencies
is observed (red dotted line) if compared to the ref-
erence measurement (black solid line). On the other
hand, by adding the metallic inclusion the first reso-
nant peak is split in two secondary resonances (solid
red line).
At higher frequencies the viscoelastic properties of
the liquid silicone rubber determine a suppression of
the plate’s response in the 2000-4000 Hz frequency
range. This phenomenon is particularly evident for the
peaks located at 2000 and 3300 Hz as depicted in Fig-
ure 5. At higher frequency the addition of the metal-
lic inclusion does not affect the dynamic behavior of
the assembly, above 500 Hz the response associated
to plate equipped with the resonant units is exactly
superposed to the response of the plate equipped with
the sole rubber frame.
In practical application the modal content of the

structure that one may wants to control is not pre-
cisely known. Therefore it of the paramount impor-
tance to be able to adjust the values of each resonant
unit in order to achieve the best performance. With
this in mind a further analysis has been performed
with the aim to determine the range of frequency that
can be ’covered’ by the control device once the mass
of metallic inclusion is varied.
In Figure 6 the reference measurement (solid black
line) is compared with the response of the plate
equipped with the resonant unit with a solid (red line)
and an hollow (blue line) inclusion. As expected a
diminution in the inclusion’s mass determine a shift
of the resonance toward higher values. Concretely the
control resonant frequency is moved from approxi-
mately 70 to 100 Hz.
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Figure 5. FRF of the assembly in the 0-5000 Hz frequency
band: bare plate (black solid line), plate + rubber frame
+ inclusion (red solid line) and plate + rubber frame (red
dotted line)
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Figure 6. FRF of the assembly in the 0-500 Hz frequency
band: bare plate (black solid line), plate + rubber frame
+ inclusion (red solid line) and plate + rubber frame +
lightened inclusion (blue solid line)

5. Concluding remarks

Strategies have been proposed for the design of struc-
tural assemblies able to control the dynamic response
of a two-dimensional flexible structures. In the present
study a periodic resonant lattice is integrated into a
plate to enhance the vibro-acoustic properties of the
assembly.
The design of internal resonators is based on the con-
cept of distributed vibration absorbers, which has re-
ceived significant attention in the recent literature on
acoustic metamaterials. The lattices are tuned to pro-
vide out-of-phase motion with respect to the primary
structure, which leads to the confinement of energy
and band-gap behavior that prevent the onset of vi-
brations. Resonant masses are added as stiff inclusions
attached on the top of an elastomeric cylinder. The
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lattice structures are realized with a soft rubber ma-
terial that dissipates the vibrational energy captured
by the resonators through structural damping.
Numerical investigations demonstrate that periodic
arrangements exhibit wide band-gaps at low frequen-
cies. The results associated to the study of the fully
coupled system also show that the addition of the res-
onant inclusions can be beneficial to the attenuation
of radiated sound over a specific frequency band.
Preliminary experimental results have shown how
that addition of this device could modify the dynamic
behavior of the assembly.
Further experimental studies will be performed by
considering multiple resonant units attached to a fi-
nite extent plate with the aim to show the applicabil-
ity of the concept to real-life structure.
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