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Summary

Predicting the airborne or structure-borne sound transmission through a real-life building element
generally requires a detailed model of that element. Simplified analytical structural models based on
infinite thin plate theory are important for gaining insight into the physical principles of the sound
transmission process, but they are inaccurate when the modal behavior of the building element
is important or when the geometry of the wall is complex. A commonly adopted strategy therefore
consists of constructing a detailed finite element model and computing the expected value of the sound
reduction index by numerically integrating the plane-wave transmission over all angles of incidence.
This is not only computationally costly, but all information on the uncertainty of the predicted values
due to the statistical nature of the diffuse acoustic field model is also lost. An alternative, more
efficient method for coupling a finite element model of a building element to diffuse field models of
the rooms has been recently presented. It is based on two recent developments in diffuse field theory:
a direct field - diffuse field reciprocity relationship and the the Gaussian Orthogonal Ensemble model
for the natural frequencies and mode shapes of a diffuse component. Both the mean and variance
of the sound reduction index can be computed, so that the uncertainty of the predicted values due
to the diffuse acoustic field assumption can be assessed. In this paper, the method is employed for
predicting the sound transmission through complex building elements. The predictions are validated
against available measurement data, and it is found that the proposed approach can capture both
the complex dynamics of the walls and the uncertainty that is related with the diffuse acoustic field
assumption.
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1. Introduction the uncertainty of the predicted values due to the
statistical nature of the diffuse acoustic field model
Predicting the airborne or structure-borne sound is also lost.
transmission through a real-life building element gen- An alternative, more efficient method for coupling
erally requires a detailed model of that element. Sim- a finite element model of a building element to dif-
plified analytical structural models based on infinite fuse field models of the rooms has been recently de-
thin plate theory are very important for gaining in- veloped [3, 4, 5]. It is based on two recent dev.elop—
sight into the physical principles of the sound trans- ments in diffuse field theory: a direct field - diffuse
mission process, but they are inaccurate when the field reciprocity relationship |6] and the the Gaussian
modal behavior of the building element is important Orthogonal Ensemble model for the natural frequen-
or when the geometry of the wall is complex [1, 2]. A cies and mode shapes of a diffuse component [7]. Both
commonly adopted strategy therefore consists of con- the mean and variance of the sound reduction index
structing a detailed finite element (FE) model and can be computed, so that the uncertainty of the pre-
computing the expected value of the sound reduc- dicted values due to the diffuse acoustic field assump-
tion index by numerically integrating the plane-wave tion can be assessed. The method is also known as
transmission over all angles of incidence. This is not the hybrid finite element - statistical energy analysis
only computationally costly, but all information on (FE-SEA) method, however, it is much more general

than standard SEA because coupling loss factors can
be computed in a logically consistent and straight for-
(c) European Acoustics Association ward way, also when the overall system contains de-
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ance values, representing the uncertainty inherent in
the diffuse field assumption, can also be obtained [4].
This paper provides a brief overview of the hybrid
FE-diffuse field method and recent applications and
validations towards predicting the sound transmission
through building elements of increasing complexity.
More details can be found in [9, 10].

2. Hybrid finite element - diffuse field
modeling

In this section, the hybrid method is introduced by
means of an example situation, where a finite element
model of a wall is coupled to two diffuse sound field
models of the adjoining rooms. A general setting of
the method can be found in [5, 9].

2.1. Notations and definitions

The response degrees of freedom (DOFs) at pulsation
w of the wall are collected in an amplitude vector q €
CNaot | g0 that the time-domain response of the wall is
given by Re(qe™?). Similarly, the external harmonic
loads at w applied at these degrees of freedom are
collected in the load amplitude vector f € CNaor, The
equations of motion of the complete system (wall and
rooms) are then

Dq =f, (1)

where D € CNaorxNaot denotes the dynamic stiffness
matrix at frequency w. D is a random matrix because
it represents the dynamic behavior of the overall sys-
tem, including the diffuse sound fields, at the wall
DOFs. It may be decomposed as the sum of the dy-
namic stiffness matrix of the wall, denoted as Dy, and
the dynamic stiffness matrices of the two sound fields,
denoted as D; and Ds:

D =Dy +D; + Do. (2)

The dynamic stiffness matrix of a diffuse sound field
is decomposed as

D), = DY) + D), (3)

where Dgi? denotes the mean of the dynamic stiffness
matrix: Dgfr) := E [Dg]. With this decomposition, the
equations of motion for a diffuse sound field can be
written as

D)q = £ + £(L) (4)

ran’
k
where the reverberant forces are defined as fr(mz =

fon’;%q, and f;, denotes the sum of the loads applied
to sound field k at the wall DOFs. The overall equa-
tions of motion (1) become

Dyoiq = £+ £ + 30, (5)
where Dy := Dy —I—Dgg—i—D((fiz is purely deterministic

because it is the mean of the dynamic stiffness matrix
of the overall system: Dy, = E [D].
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2.2. Mean harmonic response

The mean total energy Ej of each random sound field
j can be obtained from a stationary power balance
which involves the other random sound fields as well
as the deterministic wall [3]. For the special case where
the external loading acts on the sound fields but not
on the wall in between, this reads:

E[Pl] = w (771 + nd71) El —+ wn12n1 <nl _ 2)
1

na
E[P] = w (n2 + 1na,2) B2 + wiaing (2 - 1) (6)
U») ni

In this expression, 7; is the damping loss factor of
sound field j, n; its modal density, P; the power in-
put from external forces applied directly to this sub-
system, and

2 _ i _
whd,j = R Z Im (DdJ"S) <Dto};1m (Dgiju)r) D 0?)
i s rs
2 i _ _
Wik = ; Z Im (D((ijlz,rs) (Dtotlm (Dt(:l]flz) Dtoltq)rs

where the superscript ¥ denotes Hermitian transpose.
Since both sound fields are weakly coupled through
the wall, E[P;] can be approximated as the power
input to the mean uncoupled subsystem. It can be
noted that the power balance equation (6) has the
same structure as in conventional SEA. Therefore the
factors 7, represent coupling loss factors, and (8)
provides a rigorous and straightforward way to com-
pute them, even when the overall vibro-acoustic sys-
tem contains purely deterministic components. The
coupling loss factors, as computed from (8), automat-
ically contain the effects of both resonant and non-
resonant transmission, while in conventional SEA,
these effects need to be considered separately [8].
The frequency-dependent matrix Dg?r) of each
sound field can be computed as its the direct field
receptance matrix [11, 8]. The term ‘direct field’ de-
notes the part of the room response containing incom-
ing waves only; it is the limiting response that would
be observed at the interface with the wall when the
extent of the room would be increased towards infin-
ity. The direct field dynamic stiffness matrix of a room
as seen by the wall therefore corresponds to the one
of a grid of points covering the interface between the

room and the wall, but embedded in an infinite planar
baffle.

2.3. Variance of the harmonic response

For the computation of the variance of the total en-
ergy of each sound field in the considered situation,
the interested reader is referred to [9, Sec. 2.3].
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2.4. Sound reduction index

In laboratory conditions, the sound reduction index
R is determined from the following measurement for-
mula:

S
R = Lpl — Lpg + 10 IOg A—, (9)
2

where L, and L, are the spatially averaged station-
ary sound pressure levels in the emitting and receiving
rooms, respectively, S is the surface area of the par-
tition and As the absorption of the receiving room.
In stationary conditions, the total energy of a subsys-
tem, consisting of the sum the kinetic and potential
energies, is constant. For low damping and at reso-
nance, the kinetic and potential energies at a partic-
ular nonzero frequency will be approximately equal
[12]. An equivalent expression for (9) is therefore [9]

£V, S

= 10log ———
R ©8 ExVi Ay’

(10)
where F; and FEs represent the total energy in
the emitting and receiving rooms, respectively,
and Vi and V5 their respective volumes. A first-
order Taylor expansion of (10) around R =

101og (Elng/ (E’2V1A2>) can be analytically com-

puted, resulting in the following approximations for
the mean

E\VaS
E[R] ~ 10log ———

, (11)
EsVi Ay

and variance

02~ 100 VarA(E1) _ A2A Cov(E1, Ey)
In (10) E% E1E2
4 Yar(Ep) (12)
E3

of the sound reduction index [9].

3. Applications and experimental vali-
dation

In this section, the capabilities of the hybrid method
for predicting the sound transmission through build-
ing elements is illustrated for recently reported ap-
plications on wall systems of increasing complexity.
The hybrid model predictions are compared with mea-
surements, performed in the transmission suite of the
Laboratory of Acoustics of KU Leuven. The rooms of
this transmission suite each have a volume of 87 m?>.
The air density, sound speed and reverberation time
of the rooms are taken to be constant with values of
pa = 1.20 kg/m3, ¢ = 343 m/s and T = 1.5 s, respec-
tively.

2511

E. Reynders: Efficient and...

3.1. Rib-stiffened plate

The first structure is a rib-stiffened PMMA plate of
dimensions 1.25 m x 1.5 m x 15 mm, to which 11
steel L30 stiffeners with a length of 1.395m are at-
tached (Fig. 1). The center-to-center spacing between
the stiffeners is 100 mm, the distance between a verti-
cal edge of the plate and a vertical edge of the closest
stiffener is 110 mm, and the distance between a hori-
zontal edge of the plate and the closest end section of
a stiffener is 52.5 mm. The stiffeners are both glued to
the base plate over their entire length, and addition-
ally screwed to the base plate at four points.

Figure 1. PMMA plate with 11 steel L30 stiffeners at-
tached.

A finite element (FE) model of the structure was
made using the commercial software ANSYS [10]. The
base plate was modeled with four-node shell elements
and the stiffeners were modeled with two-node Tim-
oshenko beam elements. The plate and the stiffen-
ers were fully coupled, and the offset of the stiffeners
with respect to the midplane of the plate taken into
account. Simply supported boundary conditions were
applied at all edges of the plate. For the steel pro-
files, a Young’s modulus of F; = 210 GPa, Poisson’s
ratio of v5 = 0.3 and density of p; = 7850 kg/m? were
taken. The material properties of the PMMA base
plate were estimated at E, = 5.125GPa, v, = 0.35
and p, = 1170kg/m?.

The structural finite element model is coupled to
a GOE diffuse model of the rooms using the hybrid
method. The predicted sound reduction index (mean
and 95 % confidence interval), is plotted in Fig. 2 to-
gether with the measured values which were averaged
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over 1/48-octave bands. The measured R fluctuates
around the mean prediction and the measured fluctu-
ations lie nearly always within the predicted 95 % con-
fidence interval. At the lowest frequencies, this confi-
dence interval is very wide, thus indicating that the
hybrid model predictions (with diffuse field models
for the sound fields in the rooms) are not adequate at
those frequencies. However, the uncertainty decreases
rapidly with frequency, so that from about 125 Hz
onwards, useful conclusions can be drawn from the
model.

The pronounced dips that are observed in both the
measured and the predicted sound reduction index
above 140 Hz correspond with some of the eigenfre-
quencies of the finite-sized rib-stiffened plate. They
do not correspond with eigenfrequencies of the bare
rooms, as these are not included in the hybrid FE-
SEA model. The dips can be attributed to a discrete
coincidence phenomenon which involves only specific
plate modes, namely, those modes for which the total
wave number is close the the free-field acoustic wave
number at the same frequency [10].

125 250 500 1000 2000
Frequency [Hz]

40 W

10 125 250 500 1000 2000

Frequency [Hz]
Figure 2. Measured sound reduction index of a rib-
stiffened plate in 1/48-octave bands (blue) vs. the har-
monic mean values (red, top) and 95% confidence inter-
vals (red, bottom) as predicted with the hybrid method.
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3.2. Lightweight perforated brick wall

The second structure is a perforated brick wall, plas-
tered at both sides, of dimensions 3.25 m x 1.95 m x
0.19 m. The acoustic behavior of perforated brick
walls is complex, given the inhomogeneities at three
different scales: that of the fire clay material, that
of the brick where small cavities are present in the
fire clay because of the perforations, and that of the
complete wall where the bricks are held together by
mortar layers. When the inhomogeneities are small
compared to the wavelength, and when the stiffness
is only slightly different in all directions, the wall can
be modeled as homogeneous and isotropic. The thick-
ness effects, however, can not be neglected: not only
is shear deformation important, thickness resonances
(i.e., Lamb modes) are often observed as well in the
audio frequency range [13]. Therefore, a 3D finite ele-
ment model of the wall is made in ANSYS using vol-
ume (solid) elements. The boundary displacements in
the middle plane are restrained. Following [14], the
equivalent Young’s modulus, Poisson’s ratio, density
and thickness are taken to be £ = 1825 MPa, v = 0.2,
p = 613.5 kg/m? and t = 0.2934 m, respectively.

60 -

501

40

R [dB]
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10 63 125 250 500 1000 2000 4000
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Figure 3. Sound transmission loss of a lightweight per-

forated brick wall. Predicted mean and 95 % confidence

interval, computed with the hybrid method (red), vs. lab-

oratory measurements (blue).

The sound reduction index predicted with the hy-
brid method (mean and 2c confidence interval), is
plotted in Fig. 3 together with the measured values
reported in [14] which are averaged over 1/48-octave
bands. Individual resonance dips of the wall are very
clearly visible in the predicted sound reduction in-
dex because of the high stiffness and low damping
of the wall. Another clear dip, which is caused by
the first thickness resonance of the wall, is visible
around 3000 Hz. The width of the confidence interval
decreases slowly with frequency. The uncertainty ac-
counted for in the model can for a large part explain
the discrepancies between measurements and model
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predictions from about 125 Hz onwards, i.e., in the
mid-frequency range.

3.3. Double glazing

The final structure consists of two glass panes, 6 mm
and 8 mm thick, separated by an air cavity of 12 mm.
The dimensions are 1.20 m x 1.45 m. As material prop-
erties of the glass, a density of p = 2500 kg/m3, a
modulus of elasticity of £ = 62 GPa, and a Poisson’s
ratio of v = 0.24 are taken. For the damping loss fac-
tor of the glass panes, measured values are used, while
the air cavity is taken to be undamped.

The glazing is modeled with a Rayleigh-Ritz ap-
proach, where the analytic modes of the decoupled
simply supported glass panes and the decoupled hard-
walled cavity are taken as Ritz basis vectors (see [15,
App.] for details). This deterministic wall model is
then coupled to the nonparametric stochastic models
of the rooms with the hybrid method, and the sound
transmission loss is computed.
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Figure 4. Sound transmission loss of double glazing 6—12—
8 mm. (top) Predicted mean, computed with the hybrid
method (red), vs. laboratory measurements (blue) and de-
terministic predictions with the TMM (black) and WBM
(green) methods. (bottom) 20 confidence interval of the
hybrid model predictions (red) vs. laboratory measure-
ments (blue).
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The mean of the computed sound transmission loss
is plotted in Fig. 4 together with the 20 confidence
interval. Individual resonance dips of the glazing are
very clearly visible in the hybrid model predictions
because of the high stiffness of the glass panes and
the low damping (the air cavity was taken to be un-
damped). A dip in the transmission loss is also visible
around 186.5 Hz which corresponds with the mass-
spring-mass resonance frequency of the glass panes
on the thin air layer when the plane dimensions of
the glazing would be extended towards infinity. Mea-
sured values, averaged over 1/48-octave bands, are
also shown. An excellent correspondence between the
measured and predicted values is observed, except at
the highest frequencies, where flanking transmission
between both glass panes could affect the measured
sound reduction index, while this effect has not been
included in any of the models.

In Fig. 4, the measurements and hybrid model pre-
dictions are also compared with the corresponding
values obtained with two deterministic methods: the
transfer matrix method (TMM) and the wave-based
method (WBM). The transfer matrix method [16]
models the double glazing as consisting of infinite lay-
ers of glass and air and the adjacent rooms as infi-
nite half spaces with diffuse sound field. This method
largely underestimates the transmission loss between
the mass-spring-mass resonance frequency of the glaz-
ing and the coincidence frequency. As discussed in
[17], this cannot be resolved by applying correction
terms for the diffraction effects by spatially window-
ing the results or a Gaussian distribution of incident
energy. This illustrates that, for double walls, it is im-
portant, to take the modal behavior of the finite par-
tition structure into account in this broad frequency
range. The wave-based method [18, 19] is a determin-
istic method that takes the modal behavior of both
the rooms and the glazing into account. It shows a
very good agreement with the measured data, but it
requires a much larger computational effort than the
hybrid method as the rooms need to be modeled with
a large number of degrees of freedom (fundamental
wave solutions), and it does not provide information
on the uncertainty caused by small variations in the
acoustic mass and stiffness distributions, which have
a wave scattering effect.

4. Conclusions

A stochastic method for vibro-acoustic analysis, con-
sisting of a hybridization of deterministic and diffuse
field modeling, has been recently developed. Com-
pared to fully deterministic methods such as finite ele-
ment analysis or the wave-based method, the method
is computationally very cheap, since subsystems that
carry a diffuse field are characterized by a single de-
gree of freedom: the total energy. In this paper, the
focus has been on the sound transmission through a
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complex wall that is situated in between two rooms,
each of which having a diffuse sound field. Not only
mean values of the sound reduction index, but also
variances, that are inherent to the adopted random
wave scattering model underlying the diffuse field as-
sumption, were obtained. Predictions have been val-
idated against measurements, and it was found that
the proposed approach can capture both the complex
dynamics of the walls and the uncertainty of the gen-
eralized diffuse field assumption of the acoustic fields.
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