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Summary
This paper presents a method for calculating internal powers of multilayered configurations
with anisotropic porous materials. The methodology takes a plane wave solution for anisotropic
multilayered structures as a mathematical base for the derivation of the corresponding integral
expressions. Different physical phenomena within the assessed structure can be then studied in detail
as a whole or in terms of partial contributions to the total power balance. In the paper, an analysis of
the dissipation in an anisotropic porous material as a function of its material coordinate orientation
is performed.

PACS no. 43.20.Gp, 43.20.Jr, 43.40.+s, 43.35.Mr

1. Introduction

Poroelastic materials (or sound absorbing materials)
dissipate energy through different physical
mechanisms (viscous interaction, thermal exchanges,
structural damping). Together with their relatively
low weight, it has made them interesting candidates in
the design of structural components in aeronautical,
automotive or even architectural applications.

The Biot theory [1–5] describes the mechanical
behaviour of isotropic and anisotropic homogeneous
media, allowing these type of materials to be studied
in a common modelling frame. In addition, the
inherent anisotropic characteristics of poroelastic
media, induced by the manufacturing processes, have
been shown to significantly influence the overall
behaviour of multilayered structures including such
materials. The physical modelling of anisotropic
poroelastic materials has been the subject of
considerable research in the last decades [6–9]. The
efforts related to the modelling have in parallel
been complemented by advanced methods for the
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characterisation and estimation of their material
properties [10–14].

The physical response behaviour of anisotropic
poroelastic materials is considerably more complex
than the corresponding isotropic materials. To
better understand the phenomena involved in the
propagation of waves in anisotropic media, there is
a need for methods that enable a detailed analysis
of the transfer of mechanical energy between the
different phases of the materials, correlating it to
the response of different parts of the system. This
could, for example, be studied in terms of the internal
power balances. Similar works by Carcione [15], have
served as an inspiration for the current work, which
aims to extend the power analysis to the study of
the vibroacoustic response of a multilayered structure
modelled by plane wave solutions of an anisotropic
media of finite thickness.

The objective of this paper is to propose an
analysis method that allows the total and partial
power contributions to be calculated from a plane
wave solution of the acoustic behaviour analysis of
multilayered structures [16]. The plane wave solution
is extended to include anisotropic anelastic porous
media under arbitrary plane wave excitation. One of
the critical contributions provided by this method,
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Figure 1. Multilayered system of interest
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Figure 2. Rotations of the porous material coordinate
system with respect to the global coordinate system

that differentiates it from a classical plane wave
approach, is that the unknowns field variables are
expressed in terms of the amplitudes of the waves
propagating through the poroelastic material.

2. System of interest

The setup studied is a sandwich panel composed of
two face sheets and a core layer, as illustrated in
Fig. 1. The isotropic face sheets are of 1mm-thick
aluminium layers, and the core material is a
88mm anisotropic and anelastic melamine foam.
The multilayered system is excited by a plane
wave incident upon one of the face sheets, and the
transmission through the panel is given from the
computed pressure radiated from the opposite face
into an infinite fluid media. Through a fictitious
rotation of the anisotropic porous material properties,
the degree of compressional and/or shear deformation
will vary in the core as one of the face sheets is excited
by a plane wave with an arbitrary angle incidence.

To demonstrate the influence of the anisotropy
of the porous material and its relative alignment,
a comparative study of various states of rotation
of the porous material has been performed. Here,
the transformations are applied to rotate the foam’s
material reference system, as opposed to rotating the
coordinate system. As seen in Fig. 2, the angle β
corresponds to the rotation around the (0y) axis. In

the unrotated state, the material system is aligned
with the reference coordinate system.

3. Governing equations

In the following, plane wave expansions are considered
with a harmonic excitation at the circular frequency
ω. Thus, all the scalar physical fields (e.g.
displacements, forces, etc.) may be written as:

χ̂(x, y, z, t) = χ(z)eı(ωt−kxx−kyy). (1)

The cartesian coordinate system is defined in
Fig. 1. In the considered configuration, the spatial
dependence with respect to x and y is common to all
fields and imposed by the source, together with the
time dependence, it will be omitted in the following.
Let χ(z) denote the amplitude of the physical field,
and kx and ky denote the wavenumber components of
the incident plane wave.

The equations governing the behaviour of the
porous material are expressed in terms of the
displacement of the solid phase and the total
displacement [17], {us(z),ut(z)}. The expressions for
anisotropic open-cell porous media are based on the
formulations in Hörlin et al. [9],

∇ · σs(z) = −ω2ρ̃su
s(z)− ω2ρ̃eqγ̃ut(z), (2)

−∇p(z) = −ω2ρ̃eqγ̃us(z)− ω2ρ̃equ
t(z), (3)

σs(z) = Ĥsεs(z), (4)

p(z) = −K̃eq∇ut(z), (5)

where us(z) is the displacement vector of the porous
solid phase, εs(z) is the porous solid strain vector and
ut(z) is the total displacement in the porous medium.

The expressions for the different porous parameters
may be found in the references [7, 9, 18] for the
isotropic media. The porous materials are here
considered fully anisotropic, thus the terms ρ̃s, ρ̃eq
and γ̃ are second order tensors. The anisotropy of
the poroelastic materials is also reflected in the flow
resistivity σflow which here also is a second order
tensor, and the fourth order Hooke’s tensor Ĥs(ω)
which governs the relations between stresses and
strains.

All the material parameters used for the porous
melamine foam are taken from the characterisation
works by Van der Kelen et al. [13, 14] and Cuenca et
al. [11, 12].

Moreover, the porous medium is considered
anelastic with a constitutive model based on
an augmented Hooke’s law using a fractional
order derivative approach. The frequency dependent
Hooke’s law Ĥs(ω) is then given as a superposition of
a fully relaxed in-vacuo frequency-independent state
Ĉ, and a complex frequency-dependent relaxation
that depends on the fractional derivative order α̂, the
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relaxation frequency β̂, and the anelastic contribution
b̂:

Ĥs(ω) = Ĉ

(
1 +

b̂(ıω/β̂)α̂

1 + (ıω/β̂)α̂

)
. (6)

All the values of the parameters can be found in
the recent publication by the authors [19].

4. Power partitioning and balances

The power densities are physical quantities defined
in a material layer, and are functions of the physical
fields. The proposed method to evaluate the integrals
required to obtain the different power value, is based
on the concept of expressing these quantities as a
function of the wave amplitudes within the material
layer.

The integration is performed over the thickness of
the material layer, and gives as a result the power
terms related to e.g. stored power by structural means
in a solid layer, kinetic energy loss due to phase
coupling in a poroelastic layer, etc. To perform the
computation of the integral over a quadratic terms, it
is necessary to first determine its density, and then to
integrate over the width of the layer.

From Eqs. 2,3,4 and 5, a first order system can be
established as a function of the vector of physical fields
w(z):(

R + Az
∂

∂z

)
w(z) = 0. (7)

The latter can be solved, for example, through the
Stroh formalism [20], where the system is rewritten as
a function of the subset of physical fields with which
the boundary conditions of the problem are expressed,
i.e. the state vector s(z),

∂s(z)

∂z
= −αs(z), (8)

where α is a variation matrix that only depends on
the material parameters and the wavenumbers of the
incident plane wave.

In order to assess a given quadratic quantity, the
diagonalisation of the physical fields can be used.
This way, the amplitude of the propagating waves
travelling along the material layers is introduced,

s(z) =
∑
k

φeke
−λek

zqk. (9)

The matrix φe denotes the eigenvectors associated
to the travelling waves within the material layer. It
reflects the polarisation of each wave projected in each
physical field. λe is the diagonal matrix whose nth
term is equal to ıδn, where δn is the wavenumber along
the z direction associated with the nth wave.

The vector q is the generalised amplitudes of the
waves travelling along both directions of the material.
They can be extracted from the projection of the state
vector s(z) on the wave base taken at the origin of the
layer, i.e. Eq. 9 at z = 0,

q = φ−1
e w(0). (10)

Through this projection, the integral over a finite
thickness d of a quadratic quantity W may be
expressed as

W = q∗

 d∫
0

e−λ∗
ezΨe−λezdz

q. (11)

The matrix Ψ is a function of the linear
combination of the eigenvectors in Eq. 9, and depends
on the nature of the quadratic quantity evaluated.

For example, the kinetic power associated to the
deformation of the solid frame of the porous material
is analytically expressed as

Ks = ω2

4
ρ1

∫
z

|us(z)|∗ |us(z)|dz. (12)

To calculate this integral, the relevant physical field
f(z) (i.e. usx(z), σsyz(z), p(z)) is extracted from s(z),
through the introduction of a boolean matrix Lf .
Thus, if the physical fields involved in the governing
equations will yield a vector s(z) of size (m×1) where
the field f(z) is on the line mf , the boolean matrix
Lf will be of size (1×m) with a 1 in the row mf .

For the calculation of the kinetic power defined in
Eq. 12, the quadratic matrix Ψ associated with the
kinetic power Ks of the deformation along i = x, y, z
is

Ψ (Ks)i =
ω2

4
ρ1φ

∗
eL

∗
us
i
Lus

i
φe, (13)

where ρ1 is the density of the solid frame of the porous
material.

5. Results

To illustrate the proposed methodology, the power
dissipated through different mechanisms and the
kinetic power of the solid frame of the porous media
within the configuration in Fig. 1 are calculated under
normal incidence, i.e. θ1 = θ2 = 0◦. As can be
observed in Fig. 3, the motion along the z direction
governes the kinetic power of the solid phase of the
porous media. This is expected due to the perfect
coupling between the aluminium face sheets and the
porous core. Nonetheless, as the relative alignment
of the material reaches an angle of β = π/4 rad
with respect to the global coordinate system, the
kinetic power contribution from the motion along
the x direction increases to the same magnitude as
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Figure 3. Kinetic power of the solid frame of the porous material associated to the motion along x (dash-dotted line),
along y (dotted line), and along z (solid line), in the setup under normal incidence, with respect to the relative alignment
of the foam, (left) for β = 0 rad, (centre) for β = π/4 rad, and (right) for β = π/2 rad.
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Figure 4. Dissipated powers by thermal losses (dashed line), by viscous losses (dotted line), by structural losses through
compression in zz (solid line) and through shear in xz (dash-dotted line) within the porous core layer of the setup under
normal incidence, with respect to the relative alignment of the foam, (left) for β = 0 rad, (centre) for β = π/4 rad, and
(right) for β = π/2 rad.

the contribution from the kinetic power resulting
from the z direction, and even exceeding it for
several resonant frequencies. A similar analysis of the
dissipated power due to internal losses in the solid
phase of the porous material shows the same trend
for the shearing motion in the (xz) plane, see Fig. 4.
The dissipated power by the compressional motion
in the z direction dominates the global dissipated
power. Nonetheless, the dissipated power due to shear
in the (xz) plane increases to the same magnitude for
a relative alignment of β = π/4 rad. These results
suggest that the compression-induced shear motion,

specific of anisotropic media, strongly influences the
power transmission and dissipation in this setup.

6. Conclusion

A method for calculating the power balance in
multilayered structures including anisotropic porous
materials was proposed. An investigation of the
power contributions related to different deformations,
indicate that for a simple multilayered panel with
an anisotropic core compression-induced shear motion
phenomena are important.
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Furthermore, the proposed methodology underlines
the importance of the relative alignment of the
porous material coordinate system, clearly influencing
the energy transmission and dissipation through the
structure.
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