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Summary

In recent years, a number of methods for sound source localization and sound field reconstruction

with spherical microphone arrays have been proposed. These arrays have some useful properties,

e.g. omni-directionality, robustness, compensable scattering, etc. This paper proposes a plane wave

expansion method based on measurements with a spherical microphone array, solved in the framework

provided by Compressive Sensing. The proposed methodology results in a sparse solution, i.e. few

non-zero coefficients, and it is suitable for both source localization and sound field reconstruction. In

general the method provides fine spatial resolution and is robust to noise (the noisy components are

naturally suppressed). The validity and performance of the proposed method is examined, and some

of its underlying assumptions are addressed.

PACS no. 43.60.4d, 43.58.4z

Introduction

1.

Spherical microphone arrays are commonly used for
analysing complex sound fields, e.g., localise sound
sources in a given space [1 6], reconstruct the sound
field near a source to examine how it injects energy
into the medium [7-12], or capture complex acoustic
scenes for subsequent reproduction with an array of
loudspeakers [13, 14]. In recent years, spherical array
processing is becoming increasingly popular for room
acoustic applications. Unlike other common configu-
rations [15], spherical arrays are omnidirectional, and
therefore particularly well-suited in situations where
sound waves impinge on the array from multiple di-
rections, e.g. in environmental noise measurements,
or in enclosed spaces such as rooms, vehicle interiors,
etc.

Spherical microphone arrays have extensively been
used for sound source localization and direction-of-
arrival estimation. Recent studies have also examined
the use of spherical arrays for the reconstruction of
sound fields [7 12]; these methods use a spherical har-
monic expansion to provide a representation of the
sound field, used for extrapolating it to a different
area than measured. A method was recently proposed
that uses an elementary wave expansion to represent
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the measured sound field (using point sources), and
solves for the corresponding coefficients via a matrix
inversion, without explicit numerical integration on
the sphere [11, 12].

This study proposes a method based on an ele-
mentary wave expansion that promotes a sparse so-
lution to the problem (i.e. few non-zero coefficients),
which aims at an optimal representation of the mea-
sured data, and results in greater spatial resolution
and robustness to noise. The problem is formulated
in the framework provided by Compressive Sensing
(CS) [18]. Compressive Sensing makes use of the fact
that signals that are sparse in some domain can be re-
constructed perfectly, even with an apparently under-
sampled set of observations, by means of solving an
l;- minimization convex problem [17-19]. The pro-
posed method consists of formulating an elementary
wave expansion where the measured data is expanded
in a basis of choice - plane waves in the present
study, although also applicable to other wave func-
tions. Then the problem is solved via l;- minimiza-
tion, instead of the conventional 15- minimization (i.e.,
Least Squares), using convex optimization.

The focus of the present paper is to examine the
proposed Compressive Sensing approach for spherical
array processing, and discuss the potential benefits
and limitations compared to the conventional least-
squares approach.
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2. Theory

2.1. Theoretical background

Let there be a rigid spherical array of radius a im-
mersed in a sound field. The array consists of M mi-
crophones that are flush-mounted on the surface of
the rigid-sphere. The sound pressure measured by the
sensors can be expanded into plane waves arriving
from every possible direction g,
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The summation over m and n corresponds to expand-
ing a plane wave incident on a rigid sphere into spheri-
cal harmonics. The functions hg)(a:) = jn(z)=jyn(z),
are the spherical Hankel functions of the second kind
(note that the sign convention chosen is el with j the
imaginary unit), and j,(x) and y,(z) are the spheri-
cal Bessel functions of the first and second kind [20].
Their derivative is represented by j! (z) and vy, (z).
We express the angular dependency as 2 = (6, ¢), and
dQ) = sinfdfdg, so that the integration over the sphere
is [[o(-)d = fo )sinfdfde. Lastly, Y,™(Q) are
the spherical harmonlcs defined as in Ref. [20].
Equation 1 can be discretised and expressed as a
sum of L plane waves (instead of the continuous ex-
pansion expressed by the integration over )
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Alternatively, the wave expansion can be formu-
lated in terms of point sources instead of plane waves.
The measured pressure is expanded into a continuum
of sources distributed over positions rg, associated
with the integration surface S that can be chosen ar-
bitrarily (it does not need to be spherical or even sep-
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where U is the surface velocity on S. In practice, the
surface S can be placed either inside the source under
study, or in general outside the domain in which the
sound field is reconstructed, to prevent the singluari-
ties. If the distribution of sources is discretised,
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This approach based on a point source expansion
(Eq. 4), is appropriate for the reconstruction of sound
fields, because the decay of the acoustic field is mod-
eled via the spherical spreading of the point sources.
Contrarily, the former approach using plane waves
(Eq. 2), is better suited for sound source localization
where no extrapolation of the sound field is involved,
but just aims at determining the direction from which
sound waves impinge on the array, or sound field anal-
ysis. This is due to the fact that a (propagating) plane
wave expansion basis cannot model decaying func-
tions in a straightforward manner; evanescent waves
should then be included.

2.2. Method

It is possible to express Eq. (2), i.e. the total sound
pressure on the sphere, in matrix form, by conducting
the summation over n and m
p = Hx, (5)
noting that the summation should be truncated at N,
to satisfy ka < N, depending on the number of micro-
phones and size of the sphere [9]. The vector p € CM
contains the sound pressure measured at a discrete
set of M points on the sphere, and the matrix H of
dimensions M x L is the transfer matrix between the
amplitude of the waves and the measured pressure.
The amplitude of the waves corresponds to the vector
x € CL, i.e., the unknown coefficients of the expan-
sion. This problem is ill-posed, and most often under-
determined (M < L). Therefore the solution to Eq.
(5) needs to be calculated via a regularized inversion
of the problem.
In a general sense, the problem formulated in Eq.
(5) can be cast as an optimization problem of the form
= Hx (6)

miny ||x||, subject to p;

where || - ||, represents the vector norm,

1/p
|||y = (pr> :

The choice of p-norm in the coefficient vector will pro-
mote different solutions to the problem.

The Is-norm leads to the ‘conventional’ least-
squares minimisation problem. This problem has the
well-known closed form analytical solution (including
a regularisation term \),

(7)

(8)

which has many non-zero components. The super-
script H denotes the Heremitian transpose or con-
jugate transpose, I is the identity matrix and A the
regularization parameter for the Tikhonov regulariza-
tion [10, 21]. When the regularization parameter is

x = HY (HH" + A1) ' p.
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zero, the inversion corresponds to a matrix pseudo-
inverse.

On the other hand, the choice of the l13-pseudo norm
in Eq. (6), defined as ||x||o = #(i|x; # 0), promotes
sparse solutions since, by definition, it minimises the
number of non-zero entries in the vector. This norm is
in fact a count of the non-zero elements of the vector.
However, the lg-norm minimisation is a combinatorial
problem which often becomes intractable.

It can be shown [17] that for sufficiently sparse
problems, the lp-norm minimisation problem is equiv-
alent to the l{-norm problem. The choice of the 1;-
norm promotes sparsity on the solution, i.e., a small
number of non-zero coefficients, while it leads to a
convex optimisation problem that can be solved effi-
ciently.

In the presence of noise, the 1; minimisation prob-
lem is reformulated as,

miny ||x|]1 subject to ||[Hx — pl|2 < e. (9)

where ¢ is the noise floor. Alternatively, the problem
can be formulated in an unconstrained form by intro-
ducing a regularisation parameter A which determines
the weight of the 1;-norm penalty.

One important aspect of the I minimization solu-
tion is the incoherence between the columns of the
sensing matrix H, since this is a guarantee of the
equivalence between the 1g and 1; minimization prob-
lems. The coherence between the columns of H can
be described by the maximum of the non-diagonal el-
ements of the Gram matrix

w(H) = max{i¢j}|HHH|. (10)

This is also connected to the restricted isometry prop-
erty (RIP) condition, (1 — &)||x||3 < ||Hx|3 < (1 +

8s)||x||3, which is frequently found in the literature.

The obtained vector x yields the amplitudes of the
waves used in the expansion, and thus it is sufficient
for estimating the direction of arrival of the waves.
Nonetheless, if the aim were to reconstruct the sound-
field elsewhere than measured, it is possible to ex-
trapolate the wave expansion to reconstruct/predict
the sound-field elsewhere: a reconstruction matrix
H; is defined (analogous to the one in Eq. 2 or 4)
that relates the obtained expansion coefficients x to
the desired reconstruction points in the medium rg
ps = H, X, with the reconstructed pressure p, € C¥,
and using a vector ryg instead of the ro in Eq. (4).
Alternatively, one can choose a reconstruction ma-
trix based on the propagation of plane waves or point
sources in free-space, thus compensate for the scatter-
ing of the array, and reconstruct the incident pressure
as if the array was not present - see Ref. [12]).
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Figure 1. Top: Sound pressure on the spherical array;
Bottom: Plane wave model: Distribution of waves used to
model the soundfield - each circle corresponds to a direc-
tion (total of 650 waves).

3. Results

The proposed methodology and its numerical prop-
erties are examined through a simulation example.
The method consists of the plane-wave expansion de-
scribed in Egs. (1) (2) and (5); the aim is to examine
the solution obtained with the proposed CS method-
ology (Eq. 9), and to compare it with the conventional
least-squares solution (Eq. 8).

The study consists of a point source located 6 m
away from the array surface, a rigid spherical array of
50 microphones, near-uniformly distributed over its
surface, that can sample up to 5 orders of spherical
harmonics [9]. The pressure on the array surface at
500 Hz is shown in Fig. 1 (top). Normally distributed
noise is added to the simulated measurements with a
signal-to-noise ratio (SNR) of 25 dB. A plane wave ex-
pansion of 650 waves is considered, and shown in Fig.
1 (bottom). The waves are distributed over an equal
solid angle spacing; the distribution of the waves has
been determined based on a Thomson problem, that
considers equally charged particles on a sphere, and
are therefore uniformly distributed over the surface of
the sphere.

Figure 2 shows the solution of the problem based
on the conventional least-squares solution Eq. (8), and
Figure 3 shows the proposed compressive sensing so-
lution based on Eq. (9). The top row of both figures
shows the recovered pressures by each of the tech-
niques, making it apparent that both approaches can
successfully explain the measured data. The center
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Figure 2. Spherical wave incident on a spherical array,
expanded into plane waves (Eq. 2). Solution based on the
lo-norm - least squares (Eq. 8); Top: Recovered sound pres-
sure; Mid: coefficients based on 1y minimization; Bottom:
Coeflicients ordered by their direction of arrival.

row shows the coefficients of the two methodologies
(without any particular ordering), showing that the
set of coefficients obtained by the two approaches is
significantly different, particularly regarding the spar-
sity of the solution. In the Iy least-squares approach
(Fig. 2, mid.) all of the coefficients are non zero,
whereas the proposed CS method returns only three
non-zero coefficients (Fig. 3, mid.), indicating that the
measured data can be explained optimally with a min-
imal number of entries in the expansion. The bottom
plots of the figures show the coefficients of the two ap-
proaches and the corresponding direction of incidence
of the plane waves used in the model (i.e. incoming di-
rection of the waves used in the expansion). The least
squares solution corresponds to a conventional beam-
former output [4, 5], with its characteristic limited
spatial resolution (main-lobe and side-lobes). The CS
solution essentially uses three coefficients, detecting

928

EuroNoise 2015
31 May - 3 June, Maastricht
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Figure 3. Spherical wave incident on a spherical array,
expanded into plane waves (Eq. 2). Solution based on the
li-norm - Compressive Sensing (Eq. 9); Top: Recovered
sound pressure; Mid: coefficients based on 1; minimization;
Bottom: Coefficients ordered by their direction of arrival.

the direction of arrival of the spherical wave, where
the source is located, with optimal accuracy.

All in all; it is apparent that although the recov-
ered sound pressure by the two methods is virtually
identical, the differences in the coefficients are notori-
ous. Several aspects to consider about the Compres-
sive Sensing approach / 11- solution: i) the spatial reso-
lution is enhanced and approaches an ideal delta func-
tion, ii) noise is naturally suppressed; it is evident how
the sparsity constrain acts as a regularization mecha-
nism robust to noise, since the recovered coefficients
are those that span the signal, and not the measure-
ment noise; iii) lastly, the resulting solution is based
on only a few terms of the expansion, which also has
the useful implication that an over-determined sys-
tem of equations can be solved with only the relevant
expansion terms, for better quantitative accuracy.
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This study focuses on the description of the pro-
posed methodology, and examines a single source case
to provide an initial insight on its performance, and
some of the numerical properties of the solution. Fur-
ther studies will focus on sensitivity to noise, multiple
sources and complex sound fields, as well as sources
of larger spatial extent.

4. CONCLUSIONS

This study proposes and examines a method that
makes use of the framework provided by Compres-
sive Sensing for spherical array processing. The solu-
tion is obtained via 1;- minimization, which imposes
sparsity on the solution, i.e. requires that few coeffi-
cients are non-zero. The results show that the method
makes it possible to identify the direction of arrival
of the waves with almost ideal spatial resolution and
accuracy. This is the case provided that the coher-
ence of the matrix columns is sufficiently low. In a
general sense, the results indicate that it is possible
to accurately represent, the measured data with min-
imum number of coefficients. This gives the method
a promising perspective for its use on direction of ar-
rival estimation, sound field reconstruction and sound
field analysis.
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