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Summary
In contrast to the classical noise control, the soundscape approach analyzes the person-environment
interaction in more detail including positive as well as negative effects. Environmental sound is of-
ten a by-product of the environment and listening to it is rarely the purpose of being in a place.
Therefore, noticing and inhibition-of-return play an important role in the theoretical model for peo-
ple’s perception. The proposed model extends from an initial physiological response to environmental
sound over noticing, identifying, and recognizing to appraisal within a context of personal beliefs and
expectations. Consequently, it attempts to encompass the whole interaction of the person and the
environment from sensory inputs to actions related to the response on the environment. During the
recent years, environmental monitoring and sound monitoring as its part have experienced a tech-
nology driven growth to which various governing bodies have shown a significant interest. However,
the challenge now presents itself in the analysis of the acquired big data especially when it comes to
perception. Several aspects of the above mentioned theoretical model for perception of environmental
sound have been implemented in the computational models for this purpose. The models are based on
the artificial neural network structure that mimics many of the low level neural processes occurring
in the human brain. However, the models do not attempt to make a simulation of a complete brain,
which is still well out of reach even for the most advanced computer architectures. This contribution
will focus in particular on the object formation and attention processes in an attempt to predict which
sounds would be noticed by the user of a space and how this will affect the soundscape. Examples
from urban parks and residential areas will be shown to illustrate how accurately the model based
on physical inputs solely can match the human response.

PACS no. 43.50.Rq, 43.50.Qp, 43.50.Yw, 43.66.Lj

1. Introduction

The environment and the environmental sound that
people live in could be an influential factor for their
health, wellbeing and overall living satisfaction [1, 2,
3]. Sound or rather noise is in most cases byproduct
of the environment and rarely the purpose of being
in a place. Although previous regulations as well as
the measurement techniques have considered the neg-
ative effects of noise, a lot of current research in envi-
ronmental sound is directed towards the soundscape
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approach, thus considering sound as a resource rather
than a waste [4, 5].

During the recent years, noise monitoring has be-
come one of the areas to which various governing bod-
ies have shown a significant interest. Present technol-
ogy allows monitoring cities with high spatial reso-
lution thus gathering and storage of large amounts
of sensor data. However, the challenge then becomes
to analyze those data especially when it comes to per-
ception. State-of-the-art research in the field of neural
network modeling is still not being able to replicate
even the simplest models of animal brains [6], nev-
ertheless borrowing the principles and making them
more suitable for human sound perception, computa-
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tional auditory scene analysis [7] could become one of
the tools for future soundscape monitoring.

This contribution will encompass a theoretical
model for people’s perception extending from initial
reaction to environmental sound, to appraisal and
coping mechanisms. The theoretical model accounts
for complex personal factors such as expectations and
personal beliefs on the sound environment. In compar-
ison to this model, a machine listening model based
on artificial neural network that implements some of
the building blocks will be presented.

2. Human sound perception model

Humans that occupy any environment in the world
today are constantly affected by the different sounds
present in these environments. Whether it is indoors,
for instance in homes and at work places, or outdoors
(urban public spaces as well as in the nature), the
sound environment differs greatly.

Sound perception is a process that could be de-
scribed as the whole auditory scene analysis and its
concurrent interpretation by the person. While envi-
ronmental sound is a rather complex conglomeration
of various sounds originating from different sources,
humans tend to dissolve this mixture into the individ-
ual auditory streams using auditory, but also visual as
well as other cues [7].

Environmental sounds can be regarded as any
sound that does not posses a communication value to
a specific listener considered, as opposed to speech or
other informational sounds (which examples, depend-
ing on the occasion, could include horn for traffic par-
ticipants, telephone ring, fire alarm, etc.). Therefore,
initially there is no particularly strong attention focus
on any of the specific sounds, and the person is listen-
ing in readiness or rather, listening in a holistic way to
the sonic environment. Consequently, most of the en-
vironmental sounds that humans are exposed to are
not being regularly noticed, but form a background
mix or hum. However, from these sounds the listener’s
attention, using the concepts of perception, occasion-
ally selects and fine tunes the auditory streams.

Sound saliency forms a part of the bottom-up pro-
cess, and is one of the properties that should be ac-
counted for when considering human perception of
environmental sounds. Although salient sounds do at-
tract attention, they alone cannot explain all of the
attention components, thus a multisensory part and a
voluntary aspect in the final selection for attention fo-
cusing have to be considered as well. Accordingly, at-
tention provided from the saliency of the sound may
change with the gating coming from top-down per-
sonal consciousness. In addition, an important factor
in attention switching is the process of inhibition-of-
return which prevents the attention from permanently
staying focused on one single item [8]. Therefore, it
reduces the focusing on the single auditory source or

stream and gives the possibility to perceive other than
the currently most salient ones.

Additionally, appraisal of and the response to the
attended sound are guided by the meaning that the
person assigns to it. Provided that the sound is per-
ceived as negative, behavioral actions that will occur
can be observed as focusing, denial and active coping
[9]. On the other hand, for sounds with positive con-
notation, paying attention to them is something that
would be considered as an improvement of the sonic
environment. Accordingly, in soundscape research, it
was observed that by adding positively contextual-
ized sounds, such as bird sound or the sound of water
streams, their traits improve the overall appreciation
of the sonic environment [2, 10].

Furthermore, the home environment assumes that
almost every environmental sound coming from the
outside will be regarded as an intrusion and in turn
have a negative appraisal. Therefore, noticing any
sound from outside would almost definitely lead to
annoyance. However, for the public space, the sonic
environment is part of the experience of the area or
the place, and listening in search emerges as a visi-
tor’s natural listening state. Therefore, attention that
a person gives to the noticed sounds could have a
significant importance for soundscape description and
(artificial) determination of these sounds might prove
to be a reasonable method for comparing sound envi-
ronments.

Nevertheless, it should be noted that different peo-
ple also assign different meaning on soundscape prop-
erties based on their previous experiences and their
own personal beliefs. As it was shown in [11] for tran-
quility of the public spaces, most of the people could
be confined to three main groups based on their pref-
erences. Thus, finding the preference of the listeners
and assigning the specific sounds to their preference
might prove a very promising tool for sonic environ-
ment reshaping or design.

Furthermore, one should also consider the core af-
fect that is evoked by the sonic environment. As it was
previously shown, this outcome can be evaluated with
the soundscape perceptual dimensions on an eight-
scale space [4]. Effects of the sounds and noticed ef-
fects take part in the affect forming, however part
of it is evoked from background sound, consequently
inducing a "musical" listening experience [12]. Addi-
tionally, a person then experiences an emotion that is
evoked by the core affect.

In particular, during listening it becomes apparent
that the novelty in the sound might evoke a pleasant
or unpleasant emotion. Events that are correctly pre-
dicted by the brain cause an aesthetic emotion – the
reward given to the system for correctly predicting the
immediate future predictability of sound. Negative
emotion appears however when non-matching expec-
tations of the sound occur. Additionally, surprise can
also be welcomed and not trigger the negative context
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Figure 1. Human sound perception shaped from sonic en-
vironment and resulting in appraisal and behaviour. Feed-
back and sensors gating, as well as learning, are part of
the process and shape the process continuously.

when only a contrastive valence introduced. Possibil-
ity of learning the sound environment sequences can
also shape appraisal. For instance, extremely unpre-
dictable sequences of sound allow only reduced oppor-
tunity for learning. Correspondingly, extremely pre-
dictable sequences do not offer much challenge to the
brain and the learning is not existent. However, the
sequences with moderate degree of expectation viola-
tion are perceived as pleasurable [13].

Described model of auditory perception proceed-
ing from the sonic environment and shaping towards
subjective behavior and appraisal is given in Fig-
ure 1. Moreover, represented stages are gated with
inhibition-of-return coming from multisensory percep-
tion, while feedback is provided from attention focus-
ing which sharpens the sensors coping action. Learn-
ing itself occurs on all stages, however coming to the
later stage personal factors give way for cultural and
social ones (i.e. person’s social environment).

3. Artificial sound perception model

The artificial (machine) sound perception model re-
lates directly to the previously presented model for
human sound perception. It implements two basic two
different listening styles. The first machine listening
model focuses on the characteristic of holistic, non-
focused "musical" listening experience. The second
machine listening model implements analytic listen-
ing and considers the person’s attention to and the
noticing of sounds. It uses current advances in ma-
chine learning and artificial intelligence research.

With the first alternative which characterizes the
holistic, background listening experience, the artifi-
cial sound perception model directly extends the cur-
rently widely used classical A-weighted levels. Corre-

spondingly, in order to better represent the response
of the peripheral auditory system, stationary or time-
dependent loudness [14] is used. In addition, several
other spectral cues, such as sharpness and tonality,
which are also used in assessing products’ sound qual-
ity [15], can serve as an indicator for background hum
quality. Somewhat different measures that also illus-
trate spectral content are the center of gravity and
the difference between C-weighted and A-weighted
level (solely because of the simplicity of using widely
available A and C-weighting filters). Furthermore,
this spectral information enables indirect indication
of saliency and the actual sound source (e.g. birds
sounds and human voices tend to contain more higher
frequencies than the distant traffic sounds).

Temporal dynamics of the sound are also useful rep-
resentation of a holistic listening experience directly
similar to music [16]. In addition to the more gener-
ally applied peak counts and amplitude dynamic mea-
sures such as L10 − L90, the slope of the spectrum of
both amplitude and pitch serves as the balance repre-
sentation between predictability and change (novelty)
in the sound environment. Additionally, for temporal
dynamics an 1/f slope in these spectra appears to be
more closely related to the aesthetic of natural sound
and music. At the same time, time variations are also
an indirect indicator of sound saliency – the stronger
the variations the higher the sound saliency – and
therefore the noticeability of individual sounds in the
mixture.

To mimic the part of the human model regarding
the noticed sounds (left side of Figure 1), the machine
listening should correctly identify the sounds within
the sonic environment that a person would likely pay
attention to. With the relatively recent development
of advanced machine learning techniques and more
importantly the increase in computational power, it is
now becoming possible to partially simulate the essen-
tial human perceptual dynamics involved in this pro-
cess. Even though the current computational power
and the system architecture are still years behind in
managing to approach even the most simplest brains,
the possibility of machine listening with attention
models emerge from two concepts: deep neural net-
works [17] and adaptive resonance theory [18].

Artificial neural networks emerged from an effort to
mimic biological characteristics of a single neuron’s
signal transmitting properties and the connections
that the (100 billion) neurons in a human brain form
with each other. Nevertheless, although the artificial
networks were initially designed to shape the com-
plexity of a human brain, training an immense num-
ber of connection weights was nearly impossible given
the proportionally small number of typically available
training samples. As a consequence, the networks were
reduced to usually three layers with a number of hid-
den neurons, the output of which results in complex
nonlinear functions, which are however very far from
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the functionality of a human brain. Nevertheless these
simplified artificial neural networks have been used for
many different purposes, one of which also includes
sound recognition and classification [19]. For the pur-
pose of the current work this classical simple artificial
neural network structure needs to be extended and
refined.

Apart from the supervised training based upon an
already labeled set of data, used as a main princi-
ple in many machine learning problems, some neural
network architectures can be extended with an unsu-
pervised learning phase. This unsupervised training of
complex features is based on co-occurrence and works
effectively for environmental sound object creation as
shown in [20]. Moreover, including long unsupervised
training periods is much closer to how a biological
brain tries to organize the world around it.

Unsupervised training on long sound sequences –
i.e. the continuous recording of an outdoor micro-
phone – has some consequences. Firstly, careful pa-
rameter setting should prevent that well tuned neu-
rons get detuned over and over again, or in other
words, the artificial neural network catastrophically
forgets. Secondly, unsupervised training on a stream
of environmental sound may lead to overspecialization
on non-informative but frequently occurring back-
ground sound. Therefore, a selection based on the
saliency of the sounds [22] has to be included. If in-
cluded properly in the model, the most prominent
sounds that the person would likely attend to are
trained more carefully.

Even at the lowest level of sound identification or
sound source recognition, context plays an important
role when interpreting the acoustic features. For this
reason, sounds with similar characteristics, such as
traffic noise or sea waves breaking at a distance, could
be perceived as either, depending on whether the per-
son is inside a city park or at the sea shore. Moreover,
sounds that have emerged in specific environment re-
cently are more likely to occur in the same environ-
ment again. Therefore the model needs to account for
this as well. With that in mind, a short term memory
which enables accounting for recent history has been
included in the machine sound perception model.

Consequently, by assessing the sounds that are of-
ten present at the location on which the machine lis-
tener has been trained, another aspect from the un-
supervised training approach appears: specialization.
Nevertheless, context awareness also assumes that the
listener possesses a general knowledge about the en-
vironment. A human listener expects to hear certain
sounds at a particular location based on a previous
sensory experience or based on the knowledge ob-
tained from social or cultural factors. However, this
spatial awareness if not incorporated explicitly can-
not be expected to emerge in machine listeners, so
the only option remaining is to provide this informa-
tion separately. Context is established by increasing

a priori probability for detection. The feedback in-
cluded in its implementation automatically increases
the machine model’s attention focusing onto specific
sounds.

4. Applications in environmental
sound monitoring

The artificial sound perception model that incor-
porates the characteristics of human sound percep-
tion and simulates the attention to sounds, as dis-
cussed in the previous two sections, is currently used
for environmental sound monitoring. The core of
the model lays within a four-layer recurrent neural
network which structure incorporates the attention
mechanisms such as gating, inhibition-of-return and
saliency, as well as the short term memory [20].

As input to the model, environmental sound is cap-
tured by 1/3-octave bands every 125 milliseconds and
stored in the database [21]. Furthermore, features
based on the perceptual characteristics of low-level
human hearing characteristics [22], are extracted from
these data and fed to the artificial neural network as
input layer neurons.

The neural network is then trained on an extended
sequence of environmental sound. Firstly, an unsuper-
vised training without labeled data is conducted, i.e.
no teacher top-down input of labels is provided. This
approach however results in learning based only on
co-occurence. In addition, the model is also trained
at regular intervals in a supervised way with a set of
labeled sounds. This process however requires human
labeling, thus the Noiseplay game for human sound
labeling [23] has been used to create a competitive en-
vironment for performing the rather tedious process
of labeling the sounds.

Finally, after the network has been sufficiently
trained, the expected attention to different sounds
is gathered in the evaluation run. The output of the
network now consists of activations that character-
ize the attention to the specific sounds. Furthermore,
for clearer representation, attended sounds are catego-
rized into three main categories: human, mechanical
and natural sounds.

The dataset, that is used for attention model in
this paper, was obtained within the measurement and
survey campaign carried out for 22 days in eight ur-
ban parks in Antwerp, Belgium, during August and
September 2013 [24]. The data was gathered with mo-
bile sensor nodes placed in the researchers’ backpacks
which were carried on all the paths inside the parks.
The recorded data consisted of 1/3-octave bands and
audio signal together with the GPS position, which
in turn enabled the spatial representation of all mea-
surements. Additionally, questionnaire surveys were
taken from the parks’ visitors. Noticed sounds within
the sonic environment, core affect, general soundscape
appraisal and tranquility viewpoints were captured.
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Figure 2. Artificial sound attention model output for Rivierenhof park in Antwerp, Belgium. Categories of natural,
mechanical and human sounds are given in green, red and blue color respectively (background source: Bing maps). All
possible walked paths are shown in black color on a simplified map.

Figure 2 shows an example of the output created
by the sound attention model for Rivierenhof park
in Antwerp on 6th of August 2013. Sound categories
of natural, mechanical and human sounds to which
the model paid attention to are represented based
on their spatial positions. Although the model can-
not be expected to find the exact sounds that each
individual person would pay attention to, the spa-
tial separation of the categories should give informa-
tion that statistically resembles the individual per-
ception. For instance, mechanical sounds were almost
constantly noticed next to the busy roads (west part
of the park) even though the output also gave a lot of
attended mechanical sounds inside the park. On the
other hand, attended human and natural sounds ap-
pear predominantly in the center of the park. Finally,
natural sounds were more often noticed in the north
of the park which is positioned in a fairly isolated area
without many people.

However, the output also shows a significant por-
tion of human sounds activation in the areas which did
not accommodate many people during the measure-
ment campaign (central forested area). In contrast,
human sounds were correctly noticed by the model
on the busy main west-east walking connection in the
park, and, together with natural sounds, around the

main pond with the fountain. Note that at some lo-
cations the model predicts that no attention will be
paid to either of the sounds. This is a consequence of
the implementation of attention processes that allow
the model not to listen attentively just like a human
park visitor would.

5. Conclusions and future work

In this paper a model for human perception of en-
vironmental sound and its translation to an artificial
model were presented. Both models were based on
the psychological and physiological characteristics of
human perception and sound appraisal. Furthermore,
it was shown how the artificial model for attention,
based on the recurrent neural network, can be used in
the evaluation of an urban sound environment. Even
though the results are promising, the comparison of
the model outcome with the perceptual questionnaire
data requires a further non-trivial validation step.

The presented artificial sound perception model
finds its natural place as an integral part of a sound
monitoring sensor network. As a result, real-time out-
put, as well as the gathered historical data, would
enable interested stake holders to assess and conse-
quently understand the overall sonic environment and
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its evolution over time. In turn, this could prove as an
important tool for soundscape assessment with fur-
ther extension to the future urban sound planning.
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