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Summary
This work investigates the dynamic behavior of periodic unbraced frame structures made up of
interconnected beams. Two types of microstructures are especially studied: non-orthogonal unbraced
frame and honeycombs.The microstructure being much stiffer in compression than in shear, a great
variety of behaviors can occur. Assuming the condition of scale separation is respected, the dynamical
behaviors at the leading order are approached by the homogenisation method of periodic discrete
media. In the studied ranges, the local elements behave ever in quasi-statics, ever in dynamics.
For studied materials, the elastic law are given in function of the elements properties. These laws
correspond to upgraded materials as double gradient media or meta-material. To illustrate their
atypical properties, propagations of ’shear’ and ’compression’ waves are studied. In the presence of
the local resonance, the form of the equations is unchanged but the mass depends on the frequency
and, as a result, frequency bandgaps appear.

PACS no. xx.xx.Nn, xx.xx.Nn

1. Introduction

Two considerations may explain the great number of
studies devoted to the dynamic properties of periodic
reticulated (or cellular) structures, namely structures
obtained by repeating a unit cell made up of intercon-
nected beams (or plates). First they are frequently en-
countered: in sandwich panels, stiffened plates, truss
beams used in aerospace and marine structures. Sec-
ond, the periodic materials can generate complex be-
havior (Cauchy or generalized media, meta-material).

This work analyzes the propagation of plane waves
in two-dimensional periodic materials (Fig 1), consti-
tuted of elements oriented in two or three directions.
These elements being more flexible in bending than in
compression, the macroscopic properties of such ma-
terials can present a great variability in function of
the direction and of the frequency of the solicitation.

The homogenization method of periodic discrete
media (HPDM) is used. This method has already
given interesting results on the dynamic behavior of
frame structures [5], [6]. Its advantages are:

(c) European Acoustics Association

Figure 1. Example of structures

(1) The equivalent continuum is derived rigorously
from the properties of the cell. The only assumption is
the scale separation, i.e. two scales with very different
characteristic lengths can be defined : the macroscopic
(or global) scale is given by the wave propagation and
the microscopic (or local) scale by the size of the cell.
(2) The method is completely analytic. This provides
a clear understanding of the mechanisms governing
the behavior and of the role of each parameter. Such
a knowledge is desirable for the design of new mate-
rials with prescribed properties.
(3) The global behavior being identified, it is always
possible to come back to the local scale to determine
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the deformations and the efforts in the elements.
(4) Superior orders of the expansions are obtained rel-
atively easily. This is particularly interesting for the
frame structures because the shear and the compres-
sion stiffnesses do not have the same order of mag-
nitude. Since the method of multiple parameters and
scale changes is generally limited to the leading order,
it misses the shear properties and the coerciveness of
the macroscopic description is lost [1].
The implementation of the HPDM method is realized
in two steps [4] [3] : the discretization of the momen-
tum balance and the homogenization process itself. As
in [5], [6] or [7], the HPDM method is coupled with
the scaling of all the parameters in order to correctly
take into account the physics of the problem.

Section 2 describes the studied structures and sec-
tion 3 the principles of the HPDM method. Then the
equivalent description obtained in the absence of local
resonance for the inclined lattice is presented in Sec-
tion 4 and the wave propagation is analyzed at two
frequency ranges. In Section 5, the results on honey-
comb are presented before a short conclusion.

2. Studied structures and framework
of analysis

The studied structures (Fig. 2) are infinite and peri-
odic in the plane (x, y). In the first case named in-
clined lattice, the fundamental cell is constituted by
two elements of length `f and `w whose inclination
angles differ of ϕ, and in the second case named hon-
eycomb, the fundamental cell is constituted by three
identical elements inclined of π/3 the ones by regards
to the others. Elements are beams or plates behaving
as Euler beams in the plane (x, y). They are linked
by perfectly stiff and massless nodes of coordinates
~xnp = (xnp, ynp). Moreover, all elements have similar
material and geometric properties.

The study is conducted within the framework of
the small strain theory, the linear elasticity and in
harmonic regime.

3. Homogenisation of periodic dis-
crete media

3.1. Discretization of the dynamic balance

The discretization step consists in integrating the dy-
namic balance of the beams, taking the unknown dis-
placements and rotations ~u = (u, v, θ) at their ex-
tremities as boundary conditions (Fig.3). The efforts
(forces and moment) applied by an element on its ex-
tremities are expressed explicitly as functions of the
nodal kinematic variables.

Compression N = f(~uB , ~uE , `/λc)

Bending T or M = f(~uB , ~uE , `/λb)
(1)

Figure 2. Notations (above : inclined lattice - below : hon-
eycomb)

where λc and λb are the wavelengths in the local
elements at the circular frequency ω (λc � λb).

Figure 3. Notation (element)

The local dynamic balance of each element being
satisfied, it remains to write the balance of the nodes.
It consists in adding the efforts applied by the ele-
ments connected to the same node. The geometry of
the structure is also explicitly taken into account.

This process reduces the balance of the whole struc-
ture to the balance of the set of nodes without any
assumption.

3.2. Scale separation and consequences

The principles of homogenization are now used to de-
rive the differential equations describing the behavior
of the equivalent continuum. The key assumption is
scale separation. This means that the characteristic
length L of the deformation of the structure under
vibrations is assumed to be much greater than the
characteristic length `c of the basic cell. Thus, the
scale ratio ε = `c/L is a small parameter (1 � ε).
Under scale separation condition, the nodal motions
vary slowly from one node to the next. Therefore, the
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nodal variables (U (n,p), V (n,p), θ(n,p)) is described as
the discrete values of continuous functions of space
variables x and y, written as asymptotic form:

X(n,p) = X(ε, ~x) = X0(~x) + εX1(~x) + . . . (2)

In the sequel, the physically observable variables of a
given order are written with a tilde: X̃j(~x) = εjXj(~x).
The size of the cell being small (compared to L), the
motions of the neighboring nodes of node (n,p) are ob-
tained by Taylor’s series, what introduces the macro-
scopic derivatives:

X(n±1,p±1) = X0(~x) + . . .

ε
(
X1(~x)± `∗xL∂xX0(~x)± `∗yL∂yX0(~x)

)
+ . . .

Concerning the efforts, two situations are consid-
ered : (1) at the excitation frequency, the elements
are in quasi-static regime (i.e λc � λb � `c) : the
expressions of all efforts (N, T, M) can be developed
in Taylor’s series, (2) at the excitation frequency, the
elements are in dynamic regime for the bending (i.e
λc � λb ' `c) : only the expressions of compression
force (N) are developed in Taylor’s series, the others
(T and M) are conserved unchanged.

3.3. Normalization

Normalization consists of scaling the physical param-
eters (the properties of the elements and the circular
frequency) according to ε. It ensures that each me-
chanical effect appears at the same order whatever
the value of ε. Thus, the same physics is kept at the
limit ε→ 0, which represents the homogenized model.

The choice of the properties of the elements de-
termines the stiffness contrast and then the possible
mechanisms in the structure. Here, for the two struc-
tures , the elements have similar geometrical and ma-
terial properties, and a thickness to length ratio of
order ε1/2 or ε.

As regards the circular frequency, its scaling enables
to explore the different dynamic regime of the global
structure : the shear waves classically appears at lower
frequencies than the compression waves. So, the fre-
quency order (in ε) will be precised in each situation.

3.4. Continuous description

Finally, the expansions in powers of ε [§(3.2)] and the
scaling of the parameters [§(3.3)] are introduced in the
balance equation of the nodes. The relations obtained
being valid for any small enough ε, the orders can be
separated. This leads to a set of differential equations
for each order, which can be solved in increasing order.

The homogenized model is given by the leading or-
der, which corresponds to the limit when ε approaches
zero. However, in a real structure, the macroscopic
length L and the microscopic length `c are finite and
the physical scale ratio ε̃ is necessarily a finite quan-
tity. Consequently, the kinematic variables of order 0

(Ũ0, Ṽ 0, and θ̃0) are an approximation of the real
motion (the accuracy of which depends on the order
of magnitude of ε̃). The terms of superior orders are
correctors which improve the accuracy of the macro-
scopic description by taking into account phenomena
of lesser importance.

4. Study of inclined lattice

To simplify the analysis, the study of the inclined lat-
tice (Fig.2) is realised in the global inclined coordinate
system whose axes are parallel to the elements of the
lattice. The following sections focus on the leading
order. First the equivalent continuum is characterized
and then the wave propagation is studied.

In order to simplify the equations, some macro-
scopic parameters are defined. They are integrated
over the depth of the elements so that they do not
have the usual units :
- Ms = Mw +Mf : mass per unit surface (kg/m2),
- Ex = EfAf/`w sin(ϕ) and Ey = EwAw/`f sin(ϕ) :
elastic modulus in the x and y-direction (N/m),
- Gw = 12EwIw

`2w`f sin(ϕ) and Gf = 12
12Ef If

`w`2f sin(ϕ)
: contribu-

tion of the walls (w) and the floors (f) to the shear
modulus (N/m),
- G−1 = G−1w +G−1f : shear modulus (N/m)

4.1. Continuous description

For this structure, the equilibrium of the node (n, p)
depends of the motions of the four neighboring nodes
n± 1, p and n, p± 1, so :

~FE(~Un−1,p, ~Un,p)− ~FB(~Un,p, ~Un+1,p)+

~FE(~Un,p−1, ~Un,p)− ~FB(~Un,p, ~Un,p+1) = 0
(3)

In this section and the next present the behavior
of the lattice at the lowest circular frequencies giving
a dynamic description: ω = O(ε ωr). In this case, the
implementation of the HPDM method provides from
Eq.3 the following continuous description:

Ex ∂xx(Ũ0 + cϕṼ
0) = 0 (x 0)

Ex ∂xx(Ũ2 + cϕṼ
2) + (x 2)

G (∂y − cϕ∂x)(∂yŨ
0 + ∂xṼ

0)+

(Ex`
2
f/12) ∂xxxx(Ũ0 + cϕṼ

0) +Ms ω
2 Ũ0 = 0

Ey ∂yy(cϕŨ
0 + Ṽ 0) = 0 (y 0)

Ey ∂yy(cϕŨ
2 + Ṽ 2) + (y 2)

G (∂x − cϕ∂y)(∂yŨ
0 + ∂xṼ

0)+

(Ey`
2
w/12) ∂yyyy(cϕŨ

0 + Ṽ 0) +Ms ω
2 Ṽ 0 = 0{

Gw

(
θ̃0 + sϕ∂yŨ

0
)

+Gf

(
θ̃0 − sϕ∂xṼ 0

)
= 0

where sϕ = sin(ϕ) and cϕ = cos(ϕ).
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The main feature of the continuous description is its
extreme anisotropy due to the large difference in mag-
nitude of the moduli Ex, Ey (that appears in the first
order equation (x 0) and (y 0)) and G (that appears
only at the second order). Because of the quasi-static
state at the local scale, the moduli only depend on the
elastostatic properties of the frame elements. The two
elastic moduli, Ex and Ey, are related to the tension-
compression rigidity of the floors and to the one of the
walls respectively. On the contrary, the shear mech-
anism results from the bending of the walls and the
floors connected in series. Since beams are far less stiff
in bending, the shear modulus G is much less than the
elastic moduli:

G

Ex
= O(ε2)

G

Ey
= O(ε2)

This is the reason why it is necessary to calculate
equations up to order 2.

The macroscopic behavior is completely described
by Eqs. (x 0), (x 2), (y 0), and (y 2) which do not con-
tain θ̃0. The node rotation has the status of a “hidden”
variable. However, to come back to the local scale and
to determine the forces and the displacements in the
frame elements, it is necessary to calculate θ̃0 with
Eq.(4) describing the inner equilibrium of the basic
frame.

θ̃0 =
sin(ϕ)

Gw +Gf

(
Gf ∂xṼ

0 −Gw ∂yŨ0
)

(4)

Finally, note that the previous description of the
macroscopic medium established for circular frequen-
cies such that ω = O(ε ωr) remains valid as long as
the frame elements are not in resonance in bending.
In particular, it applies to statics.

4.2. Shear waves

The wave propagation in the medium is now analyzed.
Since every wave can be expressed as a superposition
of plane waves, the study focuses on this kind of waves
and the displacement field is sought in the following
way (remember that the time dependence exp(iωt) is
systematically omitted):

~U(ε, x) = (~u0+ε ~u1+ε2~u2+. . .) exp−ik(α) ~nα·~x(5)

Expression (5) is introduced in Eqs. (x 0) and (y 0):

−Ex k2(α) cos2(α) (ũ0 + cos(ϕ)ṽ0) = 0 (x 0)

−Ey k2(α) sin2(α) (cos(ϕ)ũ0 + ṽ0) = 0 (y 0)

For cos(α) 6= 0 and sin(α) 6= 0, the only solution is
~u 0 = ~0. At this frequency range, only two directions
of propagation are possible.

For α = 0, Eq. (x 0) implies ũ0 + cos(ϕ)ṽ0 = 0.
Then the second order equation (y 2) gives:

(−Gk2(0) +Ms ω
2
)
ṽ0 = 0 (6)

Figure 4. Shear wave traveling in the π/2 direction (α =
pi/2)

For α = π/2, the results are similar, but the roles of
ũ0 and ṽ0 are reversed. To correctly understand the
results, they have to be transposed in a orthogonal
coordinates system. This is illustrated on the figure
4. The real velocity is also obtained by this way and
is found constant in the two directions:

c = sin(ϕ)

√
G

Ms
(7)

To sum up, at low frequencies, waves can only prop-
agate in two directions because of the anisotropy.
The speed depends on the shear modulus G and the
mass Ms as in a classical elastic medium. The expres-
sion of G (given in Section 4) shows that these waves
are generated by the local bending of the elements.

4.3. Compression waves

The circular frequency ω is now increased up to
O(ωr) in order to investigate the behavior of the
medium when the inertia forces balance the tension-
compression forces. At this frequency, in function of
thickness, the elements can be in quasi-static regime
or in dynamics (resonance in bending). The static case
is treated first and then the inner resonance.

In statics also, with the increase of the frequency,
the inertial terms appear in the first order equations:

Ex ∂xx(Ũ0 + cϕṼ
0) +Ms ω

2 Ũ0 = 0 (x 0)′

Ey ∂yy(cϕŨ
0 + Ṽ 0) +Ms ω

2 Ṽ 0 = 0 (y 0)′

The analysis of the wave propagation is carried
out using the same method as in Section 4.2. Ex-
pression (5) of the displacement field is introduced
in Eqs. (x 0)′ and (y 0)′:

Ex k
2(α) cos2(α) (ũ0 + cϕṽ

0) = Ms ω
2 ũ0 (x 0)′

Ey k
2(α) sin2(α) (cϕũ

0 + ṽ0) = Ms ω
2 ṽ0 (y 0)′

To search non-zero solutions implies to nullify the
determinant of the system. This gives, whatever the
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value of α is, two solutions k1(α) and k2(α). It means
the propagation of compression waves is possible in all
directions, and for a particular direction, two waves
can propagate with different direction of polarization.

These results being obtained in the inclined coor-
dinate system, they are transposed in the orthogonal
coordinate system and in function of the real direc-
tion of propagation φ, what gives, for the velocities
and the associated angles of polarization :

c±(φ) =

√
2 sin(ϕ)Exr

Ms

sin2(ϕ)
√

1 + cot(ϕ) cot(φ)√
1− r tan2(α)±

√
∆

Φ±(φ) = tan−1

(
1 + r tan2(α) cos(2ϕ)±

√
∆

r tan2(α) sin(2ϕ)

)

r = Ey/Ex

∆ = (1− r tan2(α))2 + 4r tan2(α) cos2(ϕ)

tan(α) = sin(ϕ) tan(φ) + cos(ϕ)

On the figure 5, the velocities and the associated
polarization angles are presented for two angles of in-
clination of the lattice (ϕ = π/2 and π/4). As direc-
tions of polarization and of propagation are different,
these waves are shear-compression waves, frequently
encountered in anisotropic media. The propagation of
these waves is moreover non dispersive, but dramati-
cally anisotropic.

Now, the case with local dynamics is presented on
the orthogonal frame (ϕ = π/2). In the previous equa-
tion, the masses vary in function of the frequency:

Ex ∂xxŨ
0 + (Mf +Mwf(ω))ω2 Ũ0 = 0 (x 0)′

Ey ∂yyṼ
0 + (Mw +Mff(ω))ω2 Ṽ 0 = 0 (y 0)′

The nature of the waves are similar to the static
case (two waves with different polarization in all di-
rections). What differs is the variation of the apparent
mass m(ω) (Fig. 6) appearing in the equations. The
consequences are: (1) the media becomes dispersive,
(2) bandgaps appear around odd modes of bending of
elements. This effects are full described in [8].

5. Study of honeycomb

The honeycomb (Fig. 2) is now studied. Here the par-
ticularity of the local geometry is the presence of two
families of nodes. On the figure 2, squares symbolize
internal nodes and circles the main nodes. The pro-
cedure is similar to the previous case, so the calculus
are not detailed in the following. Only the main points
are described, then the results are given.

Figure 5. On top, case of the orthogonal inclined lattice
(ϕ = π/2) and below, lattice with an inclination of ϕ =
π/4 . On the left, the dimensionless velocities in function
of the angle of propagation φ (in degree) and on the right,
the associated (blue or red) angle of polarization)

Figure 6. up: variation of the apparent mass induced by
local resonance - down : variation of the velocity c and the
associated attenuation δ in case of low viscous damping.

5.1. Continuous description

The reference coordinate system is here orthogonal.
The first step consists in the resolution of the balance
of internal nodes in function of the motions of the
three main nodes of a cell. Then, the balance of a
main node can be written in function of the six main
nodes of the neighboring cells. As a consequence, the
continuous description is given with, as variables, the
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motion (U , V and θ) of the main nodes. The motions
of the internal node can then be deduced from them.

The rotation θ0 of the main nodes are given by :
θ0(~x) = (∂xV

0(~x) − ∂yU
0(~x))/2. This expression is

introduced in the equations and the homogenized de-
scription can be obtained, for the three first order,
with ~U i = (U i, V i):


λ~5(5~U0) = 0

λ~5(5~U1) = ~S1(~U0)

λ~5(5~U2) + µ4 ~U0 = ~S1(~U1) + ~S2(~U0)

with, as macroscopic elastic parameters: λ = E
2
√
3
a
`

and µ = E√
3

(
a
`

)3. The vectors ~S1(~U) and ~S2(~U) are
source terms. This description is very similar to a 2D
isotropic Cauchy medium (right parts of the equa-
tion), but the presence of the source terms generates
effects making this behavior more exotic.

5.2. Compression and shear waves

The compression waves are obtained for circular fre-
quency ω0 of order O(ωr), and by introducing the
wave expression (5), the first order becomes:

Msω
2
0
~U0 = λk2(α)(~nα.~U

0)~nα (8)

The dispersion relation is given by Msω
2
0 = λk2(α)

and the directions of polarization and of propagation
are identical. The properties of the compression wave
are the same, at the first order, as the one of a Cauchy
medium, and the velocity is : c =

√
λ/Ms.

The shear waves are obtained for circular frequency
ω0 of order O(εωr), and the first order can be re-
duced to ~nα.~U0 = 0 what means, as for classical shear
waves, that direction of polarization is orthogonal to
the direction of propagation. However, the higher or-
ders lead to the non classical relation of dispersion (in
velocity):

Msc
4(α)− µc2(α) =

λ`2

16
ω2(cos(6α)− 1) (9)

For the shear wave, the medium is both dispersive
and anisotropic. For illustrating this effect, the veloc-
ities are presented on the figure 7 in function of the
direction of propagation and of the frequency. At low
frequency, the propagation is quasi-isotropic, whereas
at higher frequency, bulbous forms appear in six di-
rections, meaning in this direction, the velocities in-
crease. Conversely to the lattice, for which the shear
waves were just generated by the bending of the local
elements, here, the traction-compression of the beams
have a contribution. This is this contribution that in-
troduces the properties of dispersivity and anisotropy.

Figure 7. Profil of shear wave velocities in function of the
direction of propagation and in function of the frequency.
Results obtained on an aluminium honeycomb with the ge-
ometrical properties : ` =5.8 mm, h = 23 mm and a=0.06
mm. The bars represent the orientation of the honeycomb.

6. Conclusion

This work shows the interest of homogenization
method of periodic discrete media (HPDM) for the
study of the properties of discrete structures. Its main
advantage is the analytical formulation which enables
to understand the mechanisms governing the global
behavior. This can also be used for the design of such
materials. This work shows also the interest of this
type of micro-structured materials, that present large
variety of behavior, useful for the construction of di-
rectional or/and frequency filters.
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