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Summary
Porous materials like acoustic foams can be used for shielding and their absorption abilities depend
on the interaction of the acoustic wave and the complex microstructure. In this paper, a homogeniza-
tion model is proposed to investigate the relation between the microstructure and the macroscopic
properties. A numerical experiment is performed in the form of simulations of sound absorption
tests on a porous material made from polyurethane. For simplicity, an idealized partially open cu-
bic microstructure is adopted. The homogenization results are evaluated by comparison with Direct
Numerical Simulations (DNS), showing a good performance of the approach for the studied porous
material. By comparing the results, it is found that Biot’s model with the parameters obtained from
the homogenization approach predict a higher resonance frequency than the DNS, whereas a full
homogenization modification improves the prediction due to the incorporation of the microscopic
fluctuation.

PACS no. 43.20.Hq, 43.40.Fz

1. Introduction

Passive sound absorbing porous materials, such as
acoustic foams, can be applied in acoustic shielding
covers to improve the sound absorption performance.
This paper focuses on modelling acoustic porous ma-
terials in order to optimally exploit their sound ab-
sorption functionalities.

Models of acoustic porous materials can be classi-
fied as equivalent fluid models for a motionless solid
skeleton and fluid-solid coupling models. In the equiv-
alent fluid model, acoustic properties depend on the
effective density and the effective bulk modulus of the
fluid in the porous material. One of the widely ac-
cepted models of this type is a semi-phenomenological
model usually referred as the Johnson-Champoux-
Allard-Lafarge (JCAL) model which gives analytical
expressions of the effective fluid density and the effec-
tive bulk modulus [1]. The non-acoustical parameters
required by the JCAL model can be calculated numer-
ically based on a representative unit cell [2]. Further-
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more, a more rigorous equivalent fluid model can be
obtained by applying the asymptotic homogenization
method to the fluid domain in the porous material [3].

An intrinsic limitation of the equivalent fluid mod-
els is the loss of the solid motion which is important
in vibroacoustic problems [4]. Furthermore, although
the sound absorbing behavior is often believed to be
mainly governed by the local visco-thermal dissipa-
tions of the fluid, in particular for some partially-
reticulated foams, the vibration of the pore mem-
branes is observed to have a non-ignorable influ-
ence [5] and the consideration of their elastic prop-
erties can improve the agreement with experimental
measurements [6]. Therefore, a fluid-solid coupling
model should be considered when the solid motion
is non-ignorable. The most famous coupling model
is probably Biot’s model based on Biot’s poroelas-
tic theory [7], describing the coupling between the
macroscopic fluid and solid displacement fields with
effective parameters that are dependent on the cor-
responding microstructure. Biot’s model includes the
effects of the microstructure implicitly through the
effective parameters: the viscous coefficient and the
added density are mainly determined by the effec-
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tive fluid density; the elastic coefficients were found
to be related to the effective bulk modulus of the
solid skeleton and the fluid for isotropic porous mate-
rials. There are also many fluid-solid coupling models
taking into account the microstructure explicitly. For
example, the asymptotic homogenization method has
been applied to a porous material including an elastic
solid skeleton and a compressible viscous gaseous fluid
with each a linearized behavior [8, 9]. By considering
the porous material as a mixture of the solid and the
fluid, a set of macroscopic thermodynamically con-
sistent constitutive equations can be obtained while
applying the volume integration to the microscopic
mass and momentum conservation equations [10].

Recently, by assuming Biot’s theory to be appli-
cable to the macroscopic problem and considering
isothermal conditions, the authors proposed a homog-
enization approach to obtain the effective parameters
based on energy consistency [11]. In this paper, this
homogenization approach is further developed: the
macroscopic problem is described with a general for-
mulation instead of Biot’s theory and a non-uniform
thermal field is considered in the microscopic problem.
This enhanced homogenization model is still compat-
ible with Biot’s poroelastic theory when the micro-
scopic fluctuations of the solid are ignorable. In the
end, a numerical example of a simple RVE is discussed
and the homogenization approach is evaluated based
on the results of Direct Numerical Simulations (DNS).

2. Homogenization framework

The objective of this section is to present a homoge-
nization framework for a general acoustic problem in
porous materials. In this paper, the problem is stud-
ied in the frequency domain and the time derivative
∂/∂t is replaced by jω with ω the angular frequency
and j the imaginary unit. The macroscopic quantities
are indicated by the subscript M and the microscopic
ones are denoted by the subscript m.

The fundamental assumption in the homogeniza-
tion method is that the scale separation principle
which requires that the macroscopic characteristic
length L∗

M is much larger than the microscopic charac-
teristic length R is satisfied. By doing so, it is possible
to separate the multiscale problem for porous materi-
als into a macroscopic problem and a microscopic one.
Furthermore, the acoustic wavelength λ should not be
smaller than the macroscopic characteristic length. To
summarize, the scale requirement in the problem is

λ ≥ L∗
M � R . (1)

2.1. Macroscopic problem

In the macroscopic problem, there are two coupled
phases: a solid skeleton and a gaseous fluid. Firstly,
it is assumed that the deformation is small. Then,
the porosity φ, defined as the volume fraction of the

fluid, remains constant and the density variations of
the solid and the fluid are both ignored compared to
the static densities ρs0 and ρf0 . The gaseous fluid is
considered to be the air and the sound propagating
process is assumed to be isentropic. Hence, the solid
displacement usM and the fluid pressure P fM are the
macroscopic field variables. The macroscopic govern-
ing equations are assumed to be

fsM −∇M · (σsM )
T
= 0

εfM −∇M · ufM = 0 .
(2)

Here the operator ∇M represents the spatial gradi-
ent at the macroscopic scale. The first equation in
Eq. (2) represents the conservation of momentum of
the solid, where σsM is the macroscopic Cauchy stress
of the solid and fsM is the external force exerted on the
solid. The second equation represents the mass con-
servation of the fluid, where εfM is the macroscopic
volumetric change of the fluid and ufM is the fluid
displacement. According to energy conservation, the
macroscopic energy variation per unit of volume of a
macroscopic point is

δEM = (1− φ)σsM : δ(∇Mu
s
M )− φεfMδp

f
M

+ (1− φ)fsM · δusM − φufM · δ(∇Mp
f
M ) .

(3)

2.2. Microscopic boundary value problem

A microscopic RVE under the isothermal condition
has been discussed in [11]. This paper focuses on the
implementation of a non-uniform thermal field. By
ignoring the viscous dissipation term, the linearized
energy conservation equation in the frequency domain
is written as

ρf0C
f
p jωθ

f
m = jωpfm +∇m · qfm , (4)

where ρf0 is the static density, Cfp is the heat capacity
at constant pressure, θfm is the temperature difference
with the ambient temperature, pfm is the pressure dif-
ference and qfm is the thermal flux. Fourier’s law is
adopted i.e. qfm = −kf∇mθ

f
m with kf the thermal

conductivity of the fluid. Moreover, a linearized state
equation is adopted:

pfm
P0

=
θfm
T0

−∇m · ufm . (5)

For the solid, thermal expansion is ignored and the
linear isotropic elastic constitutive law of the isother-
mal case can still be adopted [11].

Analogous to the boundary conditions used under
the isothermal condition in [11], a periodic bound-
ary condition for the solid displacement is applied on
the solid surface Sse (where one corner point is con-
strained):

us+m −us−m = (∇Mu
s
M )T · (xs+m −xs−m ) on Sse(6)
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and a prescribed traction is defined by ignoring the
viscous stress on the fluid surface Sfe :

n · σfm = −
(
pfM +∇Mp

f
M · xfm

)
n on Sfe . (7)

Here n is the outward unit normal vector of the sur-
face and pfM is the macroscopic pressure difference.
The variables us+m and us−m mean the microscopic solid
displacement on the two opposite boundaries S+ and
S− which are geometrically equal in a periodic RVE.
A fully continuous condition on the fluid-solid inter-
face is applied including the displacement, the force,
the temperature and the thermal flux. Moreover, a
periodic boundary condition is used for the thermal
flux:

qξ+m ·n+ = −qξ−m ·n− on Sξe , with ξ = s, f .(8)

According to energy conservation, the microscopic en-
ergy variation can be written as∫

V

δEmdV =

∫
Ss
e

(n · σsm)dA · δusM

+

∫
Ss
e

(n · σsm)xsmdA : δ(∇Mu
s
M )

− δpfM

∫
Sf
e

n · ufmdA

− δ∇Mp
f
M ·

∫
Sf
e

xfm(n · ufm)dA .

(9)

2.3. Micro-to-macro relations

Energy consistency requires that the energy variation
of a macroscopic point is the average of the total mi-
croscopic energy variation of the associated RVE, i.e.

δEM =
1

V

∫
V

δEmdV . (10)

Substituting Eq. (3) and (9) into this equation results
in the following micro-to-macro relations:

(1− φ)fsM =
1

V

∫
Ss
e

(n · σsm)dA ,

(1− φ)σsM =
1

V

∫
Ss
e

(n · σsm)xmdA ,

φεfM =
1

V

∫
Sf
e

n · ufmdA ,

φufM =
1

V

∫
Sf
e

(n · ufm)xfmdA .

(11)

2.4. Relation with Biot’s poroelastic theory

Considering the linearity of the microscopic problem,
the macroscopic quantities calculated from Eq. (11)
can be linearly expressed in terms of the macroscopic
solid displacement, air pressure and their gradients.

Firstly, the relation involving the solid force and the
fluid displacement can be expressed by

(1− φ)fsM =ω2ρc ·u
f
M − ω2(ρs0η

s+ρc)·usM
−φ∇Mp

f
M =ω2ρc ·usM − ω2(ρf0η

f + ρc)·u
f
M ,

(12)

with (ηs,ηf ,ρc) diagonal 2nd-order tensors. Further-
more, when the microscopic fluctuation of the solid
displacement can be ignored and the volume-average
fluid deformation is small enough, it is reasonable to
apply the following approximation:

ηs ≈ (1− φ)I and ηf ≈ φI . (13)

Then, Eq. (12) leads to the anisotropic Biot’s poroe-
lastic equations [7]. In this case, the term jωρc/φ has
the same physical meaning as the viscodynamic oper-
ator defined in [7].

The stress-strain relation is

(1− φ)σsM = 4D : ∇Mu
s
M +QεfM

−φpfM = Q : ∇Mu
s
M +RεfM .

(14)

and is the same as the stress-strain relation in Biot’s
theory [7]. Instead of the macroscopic measurements
required in Biot’s theory, the effective material param-
eters (4D,Q, R) can be numerically calculated based
on the associated microscopic RVE.

To summarize, in the homogenization approach,
the effective parameters (ηs,ηf ,ρc) and (4D,Q, R)
of the closed macroscopic equations Eq. (2), (12) and
(14) are numerically calculated from the microscopic
RVE. Besides, under the conditions of ignorance of
the solid displacement fluctuation and a small volume
average fluid deformation, the macroscopic governing
equations agree with Biot’s poroelastic theory where
the effective material parameters (4D,Q, R) and the
viscodynamic operator jωρc/φ are numerically calcu-
lated. In this paper, the full set of closed macroscopic
equations with parameters obtained from the micro-
scopic RVE is referred as the Full-Homogenization
model and Biot’s poroelastic model with parameters
obtained from the microscopic RVE is referred to as
the Biot-Homogenization model. Obviously, the Full-
Homogenization model is more versatile for cases with
significant microscopic fluctuations than the Biot-
Homogenization model.

3. Simulations

In this section, the numerical results for a cubic RVE
with idealized partially open membranes as shown
in Figure 1 are discussed. The fluid is considered as
air and the solid is a polyurethane (PU) as given in
Table I. Simulations of a homogenized macroscopic
sound absorption test of a 2-cm porous layer shown
in Figure 2 are compared with the DNS, in which the
microstructure of the porous material corresponds to
the RVE in Figure 1.
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Figure 1. Finite element model of a 1-mm cubic RVE with
a porosity of 89.5%, (left) the solid domain and (right) the
fluid domain. The membrane thickness is 50 µm, i.e. the
wall thickness is 25 µm. The size of the face holes in the
RVE is 0.5×0.5mm2.

Table I. Material parameters of the polyurethane (PU)
used in the simulations.

Density ρs0 [kgm−3] 1100

Bulk modulus Ks [GPa] 0.22

Shear Modulus Gs [GPa] 0.083

Heat capacity Cs
p [J kg−1 K−1] 1800

Thermal diffusivity ks [Wm−1 K−1] 0.022
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Figure 2. Macroscopic configuration for obtaining nor-
mal incident sound absorption coefficients. A symmetry
boundary condition is applied on the top and the bottom.

In the simulations with the homogenization mod-
els, there are 369 cuboid elements in the porous layer.
The pure air part is governed by the Helmholtz equa-
tion with the sound speed of air at room temperature,
i.e. cair = 343 m/s, and a given incident plane wave
pinc = e−jkx [Pa], where k is the wave number and x is
the horizontal distance from the air-porous interface
with the acoustic-poroelastic coupling condition [13].
The frequency in the simulation ranges from 100 Hz
to 5000 Hz with a stepsize of 10 Hz. In the DNS,
the porous layer is composed of the fully detailed mi-
crostructure including the solid and the fluid domains,
i.e., an array of 20 unit cells. The governing equations
in the DNS are identical with the simulations of the
microscopic RVE.
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Figure 3. Sound absorption coefficients of the simulations.

The normal incident sound absorption coefficient is
calculated by

α = 1−
∣∣∣∣prefpinc

∣∣∣∣2 , (15)

with the incident wave pinc = 1 Pa on the air-porous
interface and the reflective wave pref = p− pinc where
p is the pressure on the interface. Figure 3 plots
the sound absorption coefficients and it shows that
the resonance frequencies predicted by the two mod-
els are different: compared with the DNS, the Full-
Homogenization model improves the resonance behav-
ior relative to the Biot-Homogenization model. This is
because the microscopic fluctuation of the solid that
is ignored in the Biot-Homogenization model can in-
fluence the resonance behavior and results in an in-
crease of the dynamic mass making the resonance fre-
quency lower. It should be noted that the coefficient
calculated by Eq. (15) cannot describe the absorbed
energy correctly when resonance occurs, because the
energy is mainly absorbed by the solid skeleton at
the resonance frequency. The difference between the
DNS and the Full-Homogenization model is due to the
boundary conditions adopted in the homogenization
approach such as the ignorance of the boundary vis-
cous stress and the breakdown of the scale separation
principle in high frequencies.

4. Conclusions

Acoustic problems of porous materials were investi-
gated by using the homogenization method in this pa-
per. Based on the scale separation principle, the mul-
tiscale problem was divided into two separate prob-
lems at difference scales: the macroscopic problem was
controlled by the macroscopic solid displacement and
fluid pressure; the microscopic RVE was described
by linearized equilibrium equations and linear con-
stitutive laws. The homogenization framework was
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built by applying a periodic solid displacement, a pre-
scribed fluid traction and a periodic thermal flux on
the boundary of the microscopic RVE. The micro-to-
macro scale transition relations are obtained based on
two-scale energy consistency.

The Full-Homogenization model was obtained by
considering the linearity of the microscopic prob-
lem and the required effective parameters are ob-
tained through numerical simulations of the micro-
scopic RVE. By ignoring the microscopic fluctuation
terms, the Biot-Homogenization model correspond-
ing to Biot’s poroelastic theory can be derived from
the Full-Homogenization model. Practically, by let-
ting the dynamic densities be equal to the correspond-
ing volume fractions, the Full-Homogenization model
is simplified into the Biot-Homogenization model. A
numerical simulation of a macroscopic sound absorp-
tion experiment on a porous material with an ideal-
ized cubic microstructure was simulated by using the
two models. A DNS result was used as a reference. By
comparing the sound absorption coefficients, it was
shown that the Full-Homogenization model gives a
better prediction of the resonance frequency which is
affected by the microscopic fluctuation of the solid.

To summarize, the proposed homogenization ap-
proach has been applied to acoustic porous materi-
als in this paper. The new homogenization model can
be considered as a modification of Biot’s poroelas-
tic model with the consideration of the microscopic
viscous-thermal effects. For low frequencies or for ma-
terials with very high stiffness, the performance of
this model is almost the same as that of Biot’s model.
However, by comparing with the DNS, this new model
gives a better prediction of the resonance frequency
because of the consideration of the microscopic fluc-
tuation of the solid.
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