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Summary

The Fourier Pseudospectral Time Domain (Fourier-PSTD) method was shown to be an effective
way of modelling wave propagation. Fourier-PSTD is based on Fourier analysis and synthesis to
compute the spatial derivatives of the governing wave equation. Therefore, the method suffers from
the well-known Gibbs phenomenon when computing a non-smooth or discontinuous function. This
limits its possibilities to compute arbitrary boundary conditions. Furthermore, the method needs to
be computed on a regular mesh. Although some developments have been presented to locally refine
the grid using multidomain implementations, its performance is limited when computing complex
geometries. This paper presents a hybrid approach to solve the linearized Euler equations, coupling
the Fourier-PSTD method with a nodal Discontinuous Galerkin (DG) method. DG exhibits almost
no restrictions with respect to geometrical complexity or boundary conditions. The aim of this novel
method is to allow the computation of arbitrary boundary conditions and complex geometries by
using the benefits of the DG method while keeping Fourier-PSTD in the bulk of the domain. In this
paper, a coupling algorithm is presented together with an analysis of the precision of the hybrid

approach.

PACS no. 43.28.Js

1. Introduction

In general, accurate solutions and long time inte-
grations are sought when computing sound propa-
gation. Optimization of the computational resources
is needed in addition to the precision and stability
of numerical methods, which remains challenging in
computational acoustics community. In this sense, the
benefits of using high order methods when solving
time dependent problems have already been docu-
mented, for instance, by Hesthaven et al. [1]. Among
high order methods, Fourier pseudospectral tech-
niques have shown to be an effective way of modelling
sound propagation, e.g., [2]. These methods use all the
information available in the domain to compute the
spatial derivatives. In contrast, the well-known and
widely used finite-differences time domain (FDTD)
method [3] uses local information around the point
where the derivative is calculated. The Fourier Pseu-
dospectral Time Domain (Fourier-PSTD) method be-
longs to the family of Fourier spectral techniques.
Both methods, FDTD and Fourier-PSTD, discretize
the physical domain in a regular mesh, calculating
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the solutions at discrete points. In Fourier-PSTD, the
spatial variables are transformed through a set of
basis functions and the derivatives are computed in
the transformed domain. Since the chosen basis func-
tions consist of (periodic) trigonometric polynomials,
the domain transformation can be computed by fast
Fourier transforms (FFT). The main benefit is that
Fourier-PSTD requires only the theoretical minimum
number of points (two per wavelength) to solve the
acoustic problem of interest with spectral accuracy, as
shown by Liu [4]. Therefore, Fourier-PSTD is based
on Fourier analysis and synthesis to compute the spa-
tial derivatives of the governing equation while the
time-marching scheme is operated by another method,
e.g., Runge-Kutta (RK). Fourier-PSTD is an efficient
algorithm to calculate sound propagation but it suf-
fers from the well-known Gibbs phenomenon when
computing the derivatives of a non-smooth or discon-
tinuous function. This major limitation, caused by
the periodicity assumed in the FFT, can be solved,
e.g., by using perfectly match layers (PML) [5]. Treat-
ment of rigid boundaries and boundaries with a dif-
ferent density have successfully been presented [2],
and an approximation for impedance boundary con-
ditions has been made [6]. However, no accurate so-
lution to impedance boundary conditions has been
presented thus far. Furthermore, as mentioned, the
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Figure 1: Hybrid overlapping mesh with my, = 1 and
Npg = 4 (one Fourier-PSTD and one DG element).

method needs to be computed on a regular mesh. Al-
though, some developments have been presented by
Hornikx et al. [7] to locally refine the grid using mul-
tidomain implementations, its performance is limited
when computing complex geometries.

The idea of coupling methodologies in order to get
the benefits of each solver has already been presented,
for instance, by Utzmann et al. [8]. With the purpose
of including arbitrary boundary shapes and conditions
in the Fourier-PSTD method, this paper presents a
hybrid approach to solve the linearized Euler equa-
tions (LEE), coupling Fourier-PSTD with a nodal
Discontinuous Galerkin time domain (DG) method
[9]. DG is a finite element scheme that operates in
a functional space of piecewise polynomial functions
with no continuity constraint at cell interfaces. The
cells are connected to its neighbours via numerical
flux terms based on the values of the solutions at
both sides of the interface. The method computes the
spatial derivatives of the governing equations using
a variational formulation while the time-dependent
part of the equation can be computed using, e.g., a
low-storage RK scheme [10] [11]. Therefore, DG is
a local method that exhibits almost no restrictions
with respect to geometrical complexity, it allows to
locally refine the polynomial order and/or the ele-
ment size, and it is well suited for parallel comput-
ing. Furthermore, boundary impedance condition for-
mulations already exist, e.g. [12]. On the other hand,
DG does not achieve the power resolution of Fourier-
PSTD, what limits the efficiency of the hybrid method
respect the standalone Fourier-PSTD solver. More-
over, in this paper, the nodes within the DG elements
are the Legendre-Gauss-Lobatto (LGL) non-equally
spaced quadrature points (see figure 1), while Fourier-
PSTD works on orthogonal equidistant grids. There-
fore, the hybrid methodology needs to include spatial
interpolation to reconstruct the values everywhere. Fi-
nally, the Courant-Friedrichs-Lewy (CFL) condition,
limiting the time stability of the methods, is more
restrictive in DG than in Fourier-PSTD when solv-
ing the same scenario. Hence, the time steps in both
solvers will be different and the data exchange be-
tween them will only be done at Fourier-PSTD time
steps.

In this paper, a coupling algorithm between
Fourier-PSTD and DG is presented to solve the LEE
for a one dimensional case. The aim of this novel
method is to allow the computation of arbitrary
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boundary conditions and complex geometries by us-
ing the benefits of DG while keeping Fourier-PSTD in
the bulk of the domain. Section 2 includes a descrip-
tion of the physical model and the standalone solvers.
Section 3 focuses on the hybrid technique while an
analysis of its precision is presented in section 4.

2. Physical model and numerical
methods

The main features of the physical model and the nu-
merical methods are presented in this section. From
now on, all the common variables will be indicated
with the subscript PS or DG when they refer to
Fourier-PSTD or to nodal DG time domain method,
respectively.

2.1. Physical model

The physical model investigated in this paper is gov-
erned by the LEE for the solution of acoustic prop-
agation problems. To simplify the model, the propa-
gation medium is at rest and its temperature is con-
stant in space and time. In three-dimensional (3D)
Cartesian coordinates, the governing equation 1 in
non-conservative form reads:
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the acoustic variables q = [p,ug,uy,u.,p]T are p

the density, u; the velocity components with index
j equals to x, y or z, and p the pressure. ~ is the
heat capacity ratio and ¢ denotes the Kronecker delta
function. The sound speed can be calculated as ¢? =
~vpo/po- The physical variables are decomposed into
their ambient values, denoted by subscript 0, and the
acoustic fluctuations. Since the propagation medium
is at rest in this work, the ambient velocity ug ; is
equal zero as well as matrix C. The viscous effects
are neglected in the equations. The set is completed
with initial and boundary conditions.
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2.2. Fourier-PSTD method

Fourier-PSTD is a global wave-based time-domain
method suitable for the computation of acoustic
propagation problems governed by equation 1. The
method is computed in a regular mesh and the grid
spacing is determined by the smallest wavelength of
interest. The gradients are calculated in the wavenum-
ber domain using equation 2, by multiplying the
transformed variables times ik;, with 7 the imaginary
number and k; the wavenumber vector in Cartesian
direction j, as shown in equation 3. The transforma-
tion of the discrete acoustic variables is done by using
Fourier analysis and synthesis (F and F~! are the
forward and inverse Fourier transform, respectively).

oa _ .y,
57 H(ik; F () (2)
k‘j _ 27Tnj7ps (3)

N psArj ps

N;

with n; pg € [ Nj’zps +1, —Njéps +2,..., =%, Nj ps
the total number of grid points in the Cartesian di-
rection j and Ar; pg the equidistant grid spacing in

that direction.

2.3. Nodal DG time domain method

DG divides the computational domain into Bpg
non-overlapping conforming elements. The nodal DG
scheme approximates the acoustic variables in the
computational domain by a direct sum of Bpg lo-
cal polynomials (q®) of order Npg, and Ny, p¢ is the
number of nodal LGL quadrature points in each DG
element. The boundary of each element b is indicated
as 0b. In this work, the DG time domain method com-
putes the solution of the LEE using nodal Jacobi poly-
nomials.

The semi-discrete formulation of the LEE, following
the work by Toulorge et al. [11] and Reymen et al. [13]
is shown in equation 4:

(9qb Dpc
Mbﬁ - > KAl + -
r=1
Fpa R
ot Z M@bifabi + Mbcbqb =0 (4)
=1

where M and K represent the mass and stiffness ma-
trices, respectively, A and C are defined in section
2.1 and £9 is the numerical flux. Finally, index Dpg
represents the dimensionality of the problem and Fpg
the number of faces of each DG element. The numeri-
cal flux depends only on two values ¢, and q; on ele-
ments b~ and b* that share 9b. For this work, a fully
upwind flux scheme has been chosen that has optimal
dissipation properties when solving linear PDE’s.
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Figure 2: Initial pressure distribution in the 1D hybrid
domain and detail of the Gaussian window. The CZ
is indicated in the figure where both meshes overlap.
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Figure 3: The three areas of the CZ: data-exchange
area from Fourier-PSTD to DG (DEA-PStoDG),
data-exchange area from DG to Fourier-PSTD (DEA-
DGtoPS) and area between them (BTW-DEA).

2.4. Time integration scheme

The time derivatives of the governing equationS are
computed in both solvers using low-storage Runge-
Kutta schemes. Fourier-PSTD is calculated using the
optimized six-stage RK method presented by Bogey
and Bailly [14], referred as RKo6s; while for DG, the
performance of three different RK schemes are com-
pared in this work: RKo6s, the forth-order five-stage
scheme presented by Carpenter [15] (RK54) and the
optimized forth-order eight-stage scheme (RKF84)
derived by Toulorge and Desmet [11].

3. Hybrid methodology

The 1D hybridization method presented in this pa-
per is based on structured meshes for both solvers,
where the size of the DG elements is forced to be
an integer number of the size of the Fourier-PSTD
elements as shown in figure 1 (Arpg = mpwArps
where, mpy, € Ni. The index j in the variables is
omitted for the 1D case) and the size Arpg is de-
termined by the smallest wavelength of interest. In
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Figure 4: Post-processing and data exchange in the coupling zone (myp,, = 1 and Npg = 4)
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Figure 5: Time diagram of the hybridization process.

this work, only the case where mpy, = 1 is investi-
gated, where the Fourier-PSTD nodes are coincident
with some of the DG nodes. Therefore, no spatial in-
terpolation is needed before copying values from DG
to Fourier-PSTD. The computational domain is spa-
tially divided into a Fourier-PSTD subdomain and a
DG subdomain with a coupling zone area (CZ) as il-
lustrated in figure 2. The CZ is the data-exchange
area between solvers where both meshes overlap and
have some coincident nodes. The CZ is divided in a
data-exchange area from Fourier-PSTD to DG (DEA-
PStoDG), a data-exchange area from DG to Fourier-
PSTD (DEA-DGtoPS) and a third area between them
(BTW-DEA), as illustrated in figures 3 and 4. The
maximum frequency (fmaz,prs), limited by the spatial
Nyquist condition in Fourier-PSTD, corresponds to a
grid spacing Arpg = ¢/(2fmaz,ps) OF two points per
wavelength. In this work, the results are limited up to
fmam,hyb = C/(2-5A7’PS)-

3.1. Initial and boundary conditions

The initial conditions imposed in Fourier-PSTD
are a broadband pressure and velocity distribution
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p(xz,tg) = e‘bs(x_”s)z, u(xz,tg) = —plx,to)/poc,
where b, determines the bandwidth of the spec-
trum and x, the source location. In this work, b; =
1/(2(2.5A7ps)?)[m 2] is used. Figure 2 is showing the
initial pressure distribution in the 1D hybrid domain.
In DG, the time domain computation is initialized
with a zero-valued pressure and velocity distribution.
Relative to the boundary conditions, a window to ob-
tain periodicity is used in Fourier-PSTD (see section
3.4). While for DG, the left end of the domain is com-
puted using an acoustically rigid boundary while the
right end is where the values from Fourier-PSTD are
copied.

3.2. Time iteration, post-processing and data
exchange

The hybrid time process is schematically shown in
figure 5. The data is post-processed and exchanged
after every Fourier-PSTD time step, Atpg. The three
steps taken in the post-processing and data exchange
process are shown in figure 4. Step 1) consists of the
spectral-interpolation of the Fourier-PSTD solution in
order to find the values at the DG nodes in the DEA-
PStoDG area. In step 2), data is exchanged between
solvers in the data-exchange areas. Finally, to obtain
spatial periodicity and avoid Gibbs phenomenon, the
acoustic Fourier-PSTD variables are multiplied by a
Gaussian window in step 3) before computing the next
time step.

In Fourier-PSTD, the time step is chosen to be
Atps = CFLpgsArpgs/c while, DG time step is calcu-
lated from the expression Atpg = Atpg/spy, where,
shyb € Ni. Therefore, the Fourier-PSTD time step is
an integer number of DG time steps. In this work,
CFLps = 0.5 is used, while the hybrid method is
investigated for different values of spys.
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3.3. Spectral interpolation

Spectral interpolation is computed for each non-
coincident DG node g with coordinates x4 pg in the
DEA-PStoDG area. The value at each DG node is in-
terpolated from the closest Fourier-PSTD node, with
Az g int the distance between them. The values of the
variables at each missing DG location are computed
in the wavenumber domain by using equation 5.

Qg.int = f_l(e_ikAxg,in,tf<q))

(5)

3.4. Fourier-PSTD Gaussian window

The field Fourier-PSTD variables are multiplied by
a Gaussian window to obtain periodicity. The Gaus-
sian window acts like a PML at the boundaries of
the Fourier-PSTD domain. The single side exponen-
tial part of the window has N,, pg number of points
and it is coincident with the DEA-DGtoPS area. The
total number of points of the window is equal to the
total number of Fourier-PSTD nodes, Npg. The main
parameters of the Gaussian window, i.e Ny pg,
and 3, are selected following the indications in [7].

4. Analysis of the hybrid methodology

To find an optimum implementation of the hybrid
methodology, it is needed to determine and quantify
the sources of error in order to select a suitable com-
bination of parameters. Along this section, the error
is quantified by comparing the transformed acoustic
variables from the numerical methods with the ana-
lytical solutions using equations 6 and 7.

) o

(
)

[9[Qa(fi)] — ¢[Qn(fi)]l
T

where, @, and ), are the analytical and numerical
method solutions, respectively. Both are computed
from the transformation of the time recorded vari-
ables to the frequency domain. Both errors will be ex-
pressed as the maximum error in the frequency range
[0, fmaz, hybl, €amp,maz a0 €pha mas- The errors in this
work are computed from the sound pressure solutions.

Unless otherwise indicated, these are the main pa-
rameters used in this work: 1) the results are pre-
sented up to frmaz hys = 12000 [Hz]; 2) the correspond-
ing spatial discretization is Arps = Arpg = 0.011
[m]; 3) the sizes of the different areas are [DEA-
PStoDG, BTW-DEA, DEA-DGtoPS|—[1,1,100] el-
ements; 4) the limits of the hybrid domain are

|Qa(fi)| — [@n(fi)]
1Qa(fi)

€amp(fi) = 20log1o

epha(fi) = 2010910(

[Zmin,hybs Tmaz,hyp] = [—1.178,5] |m| and the right
limit of the DG domain is always located at
Tmaz,pc = 0 [m]; 5) the excitation is located at
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Table I: RK scheme comparison for the DG solver and
DG polynomial order and time step optimization.

RKo6s | RK54 | RKF84
[NDG7 Shyb]eam,D [575] [558] [573]
[NDGv Shyb]epha [478] [475] [473]

Table II: Hybrid method amplitude and phase max-
imum errors compare with Fourier-PSTD and DG
standalone solvers.

Hybrid | Fourier-PSTD | DG
€amp,maz [AB] | -47.6 -48.0 -63.7
€pha,maz |4B] -27.0 -27.0 -55.7

xzs = 0.5 [m] and the recording position at ;.. = 2
[m]; 6) the pressure is recorded up to t,.. = 4247Atpg
[s]; and 7) the parameters of the Gaussian window are
Nw7p5 = 100, Qg = 7.4 and 6111 =3.

4.1. DG RK scheme and parameter study

The method has been evaluated and optimized for
different RK time schemes in the DG solver: RKO0Gs,
RK54 and RKF84, while keeping RKo6s for the
Fourier-PSTD computations. For each of them, all
combinations of 3 < Npg < 10 and 1 < spy < 10
have been computed in order to find the optimum
stable cases. The lowest values of the combination
[Npg, Shyp] that give a convergent solution are pre-
sented in table I. The convergence of the solution
is evaluated by comparing €ump maer a0d €pha,mae for
each case with the smallest values of the errors of all
stable combinations. The results show that all RK
schemes give optimum results for polynomial order
Npa = 5. But, while RKo6s and RK54 require 5 and
8 DG time steps, respectively, to get a convergent sta-
ble solution, RKF84 requires only 3. Clearly, the op-
timum case is achieved with RKF84 scheme, though,
it needs more RK stages.

4.2, Hybrid method precision

The precision of the hybrid method is evaluated for
the optimum scenario found in section 4.1. The er-
rors are compared with the Fourier-PSTD and DG
standalone solutions when computing the same case.
The results in figure 6 show that €gmp and eppq of
the hybrid method and the Fourier-PSTD standalone
solver almost collapse in the graphs. The difference of
the maximum amplitude errors between both meth-
ods is about 0.4 dB, while no difference is found for
the maximum phase error, as shown in table II.
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Figure 6: €4, and epp, of the hybrid method com-

pare with the standalone solvers (hybrid and Fourier-
PSTD standalone errors almost collapse).

5. CONCLUSIONS

A hybrid methodology has been presented to solve the
LEE. The approach is suitable for computing bound-
aries using the benefits of DG while keeping Fourier-
PSTD in the bulk of the domain. The method cou-
ples the regular mesh of Fourier-PSTD with the non-
equally spaced DG nodes. In this work, both grids are
conformed to avoid spatial interpolation of the DG
variables, while, spectral interpolation of the Fourier-
PSTD solution is still needed. During the hybridiza-
tion process, the data is exchanged between solvers
every Fourier-PSTD time step. Moreover, a Gaussian
window is used to obtain periodicity in the Fourier-
PSTD domain.

The hybrid methodology has been evaluated for dif-
ferent RK time schemes. The best performance for
the evaluated scenario is achieved when using RKF84
in the DG solver and the parameters Npg = 5 and
shyp = 3 (CFLpe = 1). The error of the novel
methodology is almost identical to the error of the
Fourier-PSTD standalone solver up to 2.5 points per
wavelength for the evaluated example. This latter con-
clusion motivates to keep developing the method to-
wards higher dimensions. Current work is directed to-
wards optimizing the lengths of the areas of the cou-
pling zone as well as the Gaussian window parameters.
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