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Summary 

Traditional passive noise control techniques using Helmholtz resonators have size limitations at 

low frequency due to the long wavelengths. Promising noise reductions, with flush mounted 

Stainless Steel patches with no such constraints can be obtained building on local resonance 

phenomenon implemented in acoustic metamaterials techniques. The objective of the current 

paper is to introduce locally resonant thin Steel patches flush mounted to an acoustic duct walls 

aiming at creating frequency stop bands at the low frequency zone (below 1 KHz). Green’s 

Function is used under the framework of interface response theory to predict the degree of 

attenuation of the local resonant patches. The experimental results were compared with Analytical 

theory and Finite elements and a close agreement was found. 
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1. Introduction

1
 

In the last couple of decades, phononic crystals 

have received increased attention both 

theoretically[1]–[4] and experimentally[5]–[9]. 

Small dimensional structures which have a regular 

distribution of scattering centers have been seen to 

possess a distinct and interesting array of 

acoustical properties, perhaps most strikingly 

frequency band gaps within which acoustic waves 

cannot propagate through the structure—a so-

called phononic band gap within which 

propagation of sound, vibration, and phonons are 

all forbidden. The position and the width of the 

band gap are critical parameters for devices that 

reflect or localize the acoustic waves [4]. These 

acoustic band gap materials can have many 

practical applications such as elastic/acoustic 

filters , acoustic wave- guides, sonic lens ,cavities 

,acoustic isolators and sensors.[10]–[13] 

 

In a perfect resonance phononic crystal, the band 

gaps are introduced by two mechanisms. One is 

due to the local resonance with the resonator when 

a frequency of the sound wave coincides with its 

Eigen mode frequency.[14] The other is due to the 

                                                      

 

Bragg reflection when the periodic spacing 

between the neighboring resonators becomes a 

multiple of a half- wavelength of the sound wave. 

Band gaps are the result of wave scattering at 

periodic impedance mismatch zones (Bragg 

scattering) or are generated by resonating units 

within the medium. While Bragg scattering band 

gaps occur at wavelengths of the order of the unit 

cell size, local resonances produce frequency 

attenuation regions which are independent of the 

lattice constant defining the spatial periodicity of 

the medium. For this reason, locally resonant 

materials are of particular interest due to their 

ability to generate low frequency attenuation and 

the possibility of providing the medium with 

unusual mechanical properties at long 

wavelengths. The latter is the main objective in 

the study and development of acoustic 

metamaterials. Replacing the classical Helmholtz 

resonators we propose frequency tailored patches 

for noise reduction in ducts. 

 Locally resonating acoustic metamaterials have 

been implemented by considering single and 

multiple degrees of freedom resonating units such 

as soft inclusions periodically dispersed in a hard 

material matrix[3], [15] or periodic arrays of tuned 

Helmholtz resonators in an acoustic 

waveguide[14],[16]. Bragg-scattering-induced 

Copyright© (2015) by EAA-NAG-ABAV, ISSN 2226-5147
All rights reserved

2255



 

 

band gaps in phononic crystals exist when their 

mass density and bulk modulus are spatially 

modulated [11], [17].  

 

         The objective of the current paper is to 

introduce locally resonant Steel patches flush 

mounted to an acoustic duct walls aiming at 

creating frequency stop bands at the low frequency 

zone. Inverse surface Green’s Function is used to 

predict the performance of the local resonant 

patches. Realistic techniques for expanding the 

stop bandwidth have been introduced and the 

mutual effect of the locally resonant patches in 

conjunction with the Bragg band gap has been 

investigated. Our study is performed using the 

interface response theory of continuous media 

[18]. The plan of this work is as follows: The 

inverse surface Green’s function of the suggested 

system containing the patches and waveguide tube 

is derived. Mechanisms for broadening the band 

gap, by adding damping and lumped masses are 

presented in the analytical model.  The analytical 

model is then validated using COMSOL 

Multiphysics.  

 

2. Green's function formulation 

The wave propagation in a homogeneous solid can 

be strongly altered by inserting periodical 

inclusions with different elastic constants. The 

periodic inclusions in these so-called Phononic 

Crystals (PCs) induce a wave scattering and 

destructive interferences that appear in some 

frequency ranges, leading to forbidden band-gaps. 

Total reflection is then expected in these 

frequency ranges. The inverse surface Green’s 

function of a semi-infinite waveguide tube is 

given as formerly introduced in [4], [14], [19] 

  [gs]
−1 = −j/Z                                       (1)                                                  

with Z = ρc/a being the acoustic impedance of a 

tube-shaped material,   ρ, c being the density and 

the sound speed of the material, respectively, and 

‘a’ being the cross-sectional area of the 

waveguide. 

 

The inverse surface Green’s function of a finite 

slab shown in Figure 1 with a length L and 

admittance F and angular frequency ω under the 

closed boundary condition [19] can be simplified 

and written in the form 

 

Figure 1. Schematic of the geometry of a waveguide 

tube. a is the cross-sectional area of the waveguide 

tube. The local resonator is patch with a length L and a 

height h. 

       [Gi]
−1 = (j/Zi sin (

ωLi
c⁄ )) [

cos (
ωLi

c⁄ ) 1

1 cos (
ωLi

c⁄ )
]        (2) 

where Zi , the impedance of a thin plate with a 

high aspect ration clamped at the boundaries 

having a density ρ1 , Young's Modulus 

Y0 , Poisson ratio ν , width L and height h can be 

written as [20] 

𝑍𝑖 = 

𝑗 (
𝑘1𝑘2 𝐿 ℎ 𝜌1 𝜔

𝑘1𝑘2 𝐿 − 2 𝑐2𝑘1 ℎ  𝜌1 𝜔
2   sin

𝑘3𝐿 
2

− 4 𝑐1𝑘2 ℎ  𝜌1 𝜔
2 sinh

𝑘1𝐿 
2

) 

                                                  

(3) 

where, 

 c1 =
k2 sin

L. k2

2

hρ1ω
2 (2k1 sinh

L. k1

2
cos

L. k2

2
+ 2k2 sin

L. k2

2
cosh

L. k1

2
)

 (4) 

 c2 =
k1 sinh

L. k1

2

hρ1ω
2 (k1 sinh

L. k1

2
cos

L. k2

2
+ k2 sin

L. k2

2
cosh

L. k1

2
)

 (5) 

 𝑐 =
(𝑌0)ℎ2

12𝜌1(1−𝜈2)
   and    𝑘1 = 𝑘2 = √

𝜔

√𝑐
  

The inverse Green’s function for the patch in 

contact with the waveguide tube becomes  

gp
−1 =

j cos(ωLp/𝑐)

Zp sin(ωLp/𝑐)
 (6) 

where Zp , Lp is the impedance and length of the 

patch respectively. Similarly, the impedance for a 

circular patch [21] can also be derived and used 

instead of that of  rectangular patches. 

 

The interface domain of the composite system of 

Figure 2 is reduced to one point, and thus, the 

inverse interface Green’s function of the whole 

system can be obtained as the sum of the inverse 

Green’s functions of the two semi-infinite tubes 

and the patch[5], [14], [16] 
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Figure 2. Schematic of the final geometry of the 

system, a finite sized duct with the patch with semi-

infinite wave guide tubes on both sides. 

G−1 =
−2i

Z1
+ gp

−1  (7) 

where Z1 is the impedance of the slender tube. 

And the transmission coefficient, t, for one patch 

can be calculated by the relation [14], [16] 

                                 t = (2i /𝑍1). G                                 (8) 

A composite system is constructed cut out of the 

infinite periodic system. This finite structure is 

connected at its ends to two semi-infinite leading 

tubes. The finite structure is therefore composed 

of N patches grafted periodically with a spacing d1 

on a finite slender tube. For this new system, the 

inverse interface Green’s function is a finite 

banded matrix defined in the interface domain of 

all the connection points [14] 

GN
−1 =

[
 
 
 
 
 
 
A′ B 0
B A B
0 B 0

⋯
0 0 0
0 0 0
0 0 0

⋮ ⋱ ⋮
0 0 0
0 0 0
0 0 0

⋯
A B 0
B A B
0 B A′′]

 
 
 
 
 
 

 (9) 

The values of elements of this matrix GN
−1 can be 

obtained from reference [14].  The transmission 

factor can be formulated as [14],[16] 

T   = |
    2. Sin(α1. d1). (e

i.N.k.d1 − 1). ei.N.k.d1

(1 − ei.(α1+k).d1)2 − ei.2.N.k.d1(ei.k.d1 − ei.α1.d1)2
|

2

 (10) 

Here N is the number of patches, and k represents 

the Bragg wave vector of the infinite system 

and 𝛼1 = 𝑗𝜔/𝑐. Similarly, the reflection coefficient 

can be expressed in the form [16] 

R = |
2i

Zp
G(1,1) − 1|

2

 (11) 

2.1 Broadening of the stop bandwidth  

Viscous damping has been introduced to the 

proposed system by adding viscous damping 

layers on the patches in the experiments. Lumped 

masses of steel have also been added to the 

patches to further broaden the band gaps. The 

Rayleigh damping is the most common way to 

describe the damping present in the patches. 

Where α is the mass multiplication factor and β is 

the stiffness multiplication factor. For Rayleigh 

damping α ≥ 0 and β ≥ 0. [25],[26] 

 

The values of α and β are dependent on energy 

dissipation characteristic of structure and 

determined through modal damping ratios. The 

damping coefficient can be calculated using the 

formula [25],[27] 

𝜉 =
𝛼

2𝜔𝑖
+

𝜔𝑖𝛽

2
 (12) 

Where ωi corresponds to the different resonant 

frequencies of the system. This has been 

incorporated in the analytical model by a change 

in the impedance of patches which is governed by 

equation 3. The respective impedance of the 

lumped masses was added in series with the 

impedance of patches and the equivalent 

impedance represented the net impedance of the 

new mass-patch system.  

 

3. Experimental Setup 

A test rig was developed and two source technique 

was used to measure the attenuation achieved from 

a single patch as in Figure 3. The test rig consists 

of wooden duct 4000 mm in length and with 70 

mm square cross section and has a wall thickness 

of 22 mm. Six ¼ inch B&K 4944A microphones 

flush mounted in the duct wall, three upstream and 

three downstream of the test object, were used to 

cover the plane wave range in the test duct. 

Signals from the loudspeaker and from the 

microphones are fed into a PXI Controller data 

acquisition system as input signals and output 

signals. The signal from the loudspeaker is used as 

the reference signal. Both input and output signals 

are converted into digital signals by the NI 

acquisition system and then processed by SIDLAB 

acquisition (A LabView Program used to 

determine the Transmission Loss by the wave 

decomposition method).  

 

 

 

Figure 3. Realization of the test rig used for the 

measurements of the Transmission characteristics of 

the patch (All dimensions in mm). 

 

4. Results and Discussions 

COMSOL, a FEM based software was used for 

modeling the system of patches numerically. A 3D 

model containing one Steel patch (53 x 35 x 
0.15) mm

3
 in the center of the duct was simulated 

first and the transmission coefficient of this patch 
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was calculated. The resonance frequency if these 

patches were around 810 Hz. The surface SPL 

response of the duct is shown in Figure 4. The 

three views depicted in this figure illustrate the 

attenuation mechanism followed by the wave 

under the effect of the locally resonant Stainless 

Steel AISI 430 patch with chemical composition 

(Fe: 81/Cr: 17/ Mn / Si/ C/ S/ P). Since only plane 

wave range is assumed in this study, the formation 

of plane wave and its reflection as soon as it 

reaches the specimen can be easily visualized in 

figure 4. The attenuation observed numerically in 

this very case was around 25 decibels.   

Figure 4. SPL response (dB) of the 3D Steel patch 

clamped at the boundaries 

The outdoor radiation from the patch was 

controlled by sound hard boundary wall condition 

in the COMSOL simulations which doesn't allow 

any sound to escape from the patch. 

 

We tried to model Aluminum patches at the first 

instance using Green’s function and Finite element 

method (COMSOL). The sound attenuation 

offered by these patches was sufficiently high but 

in the measurements we discovered that the 

patches buckled after few days of measurements 

with or without flow. The buckling load for 

Aluminum was considerably low and due to this a 

shift in the resonant frequency of the patches was 

observed after few days of measurements. We 

needed a material similar to Aluminum but with a 

higher buckling load i.e. higher Young’s Modulus. 

Steel was the best option available for us, which 

was not only ubiquitous but also robust and 

cheaper alternative to Aluminum. 

 

The Transmission coefficients were modeled for a 

number of different Aluminum patch (53 x 35 x 
0.1) mm

3
 configurations inside the duct using 

COMSOL. The resonance frequency of these 

patches was around 550 Hz. There were two 

important boundary conditions assumed in these 

simulations. The patch is fixed from all the four 

sides and, only plane wave propagates at the ends 

of the duct.  The fluid medium used in all 

simulations is air. The effect of three different 

levels of Rayleigh damping applied on the patch 

can be visualized in Figure 5, where the change in 

the levels of damping served the purpose of 

broadening the area under the transmission curve. 

Though, it is a trade-off with the quality of 

attenuation, it also serves in the smoothening of 

the curve when a number of peaks are juxtaposed 

on it. The surface SPL response of the ten patches 

simulation is shown in Figure 6. Some small peaks 

are observed around the curve for (Alpha =0, 

Beta=0), which is attributed to Bragg’s scattering 

happening due to the  array of patches with a 

lattice constant of 15 cm. Similar effects can be 

seen in Figure 7 due to the same reason. 

 

As discussed earlier, the main objective of the 

study was to investigate the local resonance 

attenuation. Hence, increasing the number of 

patches was to investigate the effect of the number 

of patches (local resonators) on the noise 

attenuation rather than to introduce Bragg 

scattering effect. For the sake of clarity all the 

simulations were done at gaps which were not 

multiples of halves of the wave length of the 

excitation.  

 

In order to save computational time Green's 

function analytical model was implemented first. 

Three different configurations of Aluminum 

patches were considered in this case. One patch, 

ten patches without damping and lumped masses, 

and ten patches with damping and lumped masses. 

The comparison of the transmission coefficients 

achieved in the three cases is shown in Figure 7.  

A simple case of one steel patch flush mounted to 

the duct (Figure 3) was measured and the patch 

exhibited similar resonance characteristic in the 

expected range of frequency. Figure 8 depicts the 

comparison of measurement with Numerical and 

Analytical results. As discussed earlier the 

occurrence of non-unity transmission coefficient 

resembles duct vibrations due to its shape and 

some absorption of sound because of the material 

of the duct which was wood in this case. 

 

We varnished the duct from inside to reduce this 

kind of sound absorption but still some acoustic 

leakage and duct vibrations led to non-unity 

transmission coefficient at some frequencies. 
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Figure 5. Numerically calculated Transmission 

Coefficient for the duct with three different 

configurations of dampings applied to ten Aluminum 

patches. 

    Figure 6. Sound pressure level (dB)  in a duct (a) with 

the Aluminum patches (b) Without any resonators. 

Figure 7. Analyitcal results for three different 

configurations of Aluminum patches. 

Figure 8. Transmission coefficients for one steel patch 

from modelling techniques and measurements. 

In order to stop any sound radiation out of the duct 

through the patch, we covered the patch with an 

enclosure specially designed for the patches as in 

Figure 9. This wooden enclosure consisted of 

porous absorbers, to absorb any noise that is 

ejected out of the duct through the patch. On 

measuring this system with the enclosure we 

discovered that the resonance frequency of the 

steel patch was not at all affected by the enclosure 

(Figure 10).  

Figure 9. Realization of the test rig used with enlosure 

(All dimensions in mm). 

Figure 10. Relative transmission Loss (dB) for two 

cascaded steel patches with and without enclosure. 

 

5. Conclusions 

A systematic study of the propagation of the 

acoustic waves in phononic crystals containing 

locally resonant periodic flush mounted flexible 

Patches was carried out. 

The band structure and the transmission spectrum 

were studied for different configurations without 

any restrictions using the interface response 

theory. Significant transmission loss, which gave 

rise to absolute band gaps in the acoustic band of a 

periodic structure, was obtained. In addition to the 

band gaps formed due to local resonance effect, 

other band gaps, due to Bragg's scattering, existed 

due to the periodic nature of the structure. In the 

configurations studied, the gap width is controlled 

by the geometrical parameters including the 

dimensions of the patches and the periodic gaps of 

the structure.  
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The analytical analysis of the stop bands of these 

Metamaterials were compared with the Numerical 

results obtained from COMSOL Multiphysics. The 

results show reasonable agreements with the 

theory. The accuracy of FEM based simulation 

was restricted by the computational capabilities 

available. The analytical model can hence be 

regarded as an alternative to the FEM with a 

reduced computational cost and improved 

accuracy. 

Acknowledgments 

This research was supported by the FP7 Marie 

Curie Initial Training Network (ITN) Silent Air 

Flows in transport, buildings, and power 

generation (FlowAirS), contract number 289352. 

References 

[1] R. Zhu, G. L. Huang, and G. K. Hu, “Effective 
Dynamic Properties and Multi-Resonant Design of 
Acoustic Metamaterials,” J. Vib. Acoust., vol. 134, no. 
3, p. 031006, 2012. 

[2] J. Yeh, “Wave propagation analysis and application 
of the phononic crystal with defect inserts,” J. Eng. 
Technol., vol. 6, no. 3, pp. 309–315, 2009. 

[3] H. Assi, “Acoustic Metamaterials : Theory and 
Potential Applications,” no. 993444251, pp. 1–9, 
1960. 

[4] E. H. El Boudouti, T. Mrabti, H. Al-Wahsh, B. 
Djafari-Rouhani, A. Akjouj, and L. Dobrzynski, 
“Transmission gaps and Fano resonances in an 
acoustic waveguide: analytical model,” J. Phys. 
Condens. Matter, vol. 20, no. 25, p. 255212, Jun. 
2008. 

[5] E. H. El Boudouti, “Experimental and theoretical 
evidence for the existence of photonic bandgaps and 
selective transmissions in serial loop structures,” J. 
Appl. Phys., vol. 95, no. 3, p. 1102, 2004. 

[6] W. N. Bulk-modulus, “Experimental And 
Theoretical Investigation Of Acoustic 
Metamaterial,” 2011. 

[7] X. Wang and C. M. Mak, “Acoustic performance of 
a duct loaded with identical resonators.,” J. Acoust. 
Soc. Am., vol. 131, no. 4, pp. EL316–22, Apr. 
2012. 

[8] B. Hou, J. Mei, M. Ke, Z. Liu, J. Shi, and W. Wen, 
“Experimental determination for resonance-induced 
transmission of acoustic waves through 
subwavelength hole arrays,” J. Appl. Phys., vol. 
104, no. 1, p. 014909, 2008. 

[9] Z. Yang, H. M. Dai, N. H. Chan, G. C. Ma, and P. 
Sheng, “Acoustic metamaterial panels for sound 
attenuation in the 50–1000 Hz regime,” Appl. Phys. 
Lett., vol. 96, no. 4, p. 041906, 2010. 

[10] X.-F. Zhu, “Acoustic waves switch based on 
meta-fluid phononic crystals,” J. Appl. Phys., vol. 
112, no. 4, p. 044509, 2012. 

[11] H. C. Zeng, C. R. Luo, H. J. Chen, S. L. Zhai, and 
X. P. Zhao, “Flute-Model Acoustic Metamaterials 
with Simultaneously Negative Bulk Modulus and 
Mass Density,” pp. 1–11. 

[12] S.-C. S. Lin, B. R. Tittmann, and T. J. Huang, 
“Design of acoustic beam aperture modifier using 
gradient-index phononic crystals.,” J. Appl. Phys., 
vol. 111, no. 12, p. 123510, Jun. 2012. 

[13] F. Casadei, T. Delpero, A. Bergamini, P. Ermanni, 
and M. Ruzzene, “Piezoelectric resonator arrays for 
tunable acoustic waveguides and metamaterials,” J. 
Appl. Phys., vol. 112, no. 6, p. 064902, 2012. 

[14] Z. G. Wang, S. H. Lee, C. K. Kim, C. M. Park, K. 
Nahm, and S. A. Nikitov, “Acoustic wave 
propagation in one-dimensional phononic crystals 
containing Helmholtz resonators,” J. Appl. Phys., 
vol. 103, no. 6, p. 064907, 2008. 

[15] N. Swinteck, J. O. Vasseur, a. C. Hladky-
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