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Radiation of moving sources in time-domain
simulations of outdoor sound propagation
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Summary

This paper is concerned with time-domain simulations of radiation of moving sources in complex
outdoor environments. Indeed, time-domain methods are well-adapted to study the radiation of

moving sources as they can handle any source trajectory and any variation of the source speed
during its motion. The case of a source moving at a constant height and at a constant speed above a

flat ground is examined. First, the numerical solution is compared with an analytical solution for a

perfectly reflecting ground. Results are then examined for a finite-impedance ground. An extension
of a recently proposed analytical solution for a 2-D geometry is proposed and a comparison of the

obtained solution is performed with the numerical solution.

PACS no. 43.20.El, 43.28.Js, 43.28.En

1.

Introduction

Time-domain methods are now mature to investigate
complex problems in outdoor sound propagation in
large three-dimensional geometries [1, 2, 3]. In par-
ticular, they allow us to study the acoustic field gen-
erated by moving sources in realistic environments,
which is not available using frequency-domain meth-
ods. The feasibility of time-domain numerical simula-
tions of radiation of moving sources have been shown
recently in [4, 5].

The paper is concerned with the radiation of a
monopole moving above an impedance plane at a con-
stant speed at a constant height. This is a canonical
problem for radiation of sources in motion and has
been investigated analytically by many authors [6, 7].
However, it was noticed by Ochmann [8] that all the
proposed analytical solutions assume that the surface
impedance does not vary with the frequency during
the motion of the source. An analytical solution has
been proposed recently in [9] for a line source moving
at a constant speed and at a constant height above an
impedance plane which removes this assumption. In
particular, it was shown that for sources moving close
to the ground and at a Mach number higher than 0.2
a significant error could be obtained.

The objective of the paper is to compare the nu-
merical solution obtained from a time-domain solver
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of the linearized Euler equations to analytical solu-
tions. In particular, an analytical solution for a finite-
impedance ground surface which accounts for the fre-
quency variation of the impedance during the motion
of the source is proposed.

The paper is organized as follows. In Sec. II, the
problem is described and the parameters of the nu-
merical simulation are given. The case of a perfectly
reflecting surface is then studied in Sec. III and the
numerical solution is compared to an analytical solu-
tion. In Sec. IV, an impedance surface is considered.
The numerical solution is first presented and an ana-
lytical solution is proposed.

2. Description of the problem

The radiation of a monopole moving at a constant
height and at a constant speed above an impedance
plane is investigated. The scheme of the problem is
depicted in Fig. 1.

The linearized Euler equations are solved using op-
timized high-order finite-difference schemes. At the
outer boundaries, Perfectly Matched Layers [10] are
employed. At the ground, a time-domain impedance
boundary condition [11] is implemented. The solver is
presented in [12].

The grid is Cartesian with 2001 x 351 x 72 points in
the x—, y— and z—directions, respectively. The spa-
tial step is uniform with Az = Ay = Az = 0.1. The
time step is set to 2.9 x 107% s and 12000 time itera-
tions are performed.
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The moving source is implemented through the
mass source term:

S(x,t) = s(t)Q(x — xs = Vo), (1)

where xg = (0,0,2g) with zg = 2.1 m and with
Vo = (V%,0,0). The Mach number M = V;/¢ is
equal to 0.15. The source spatial distribution Q(x)
is Gaussian and its halfwidth is equal to 0.1 m. The
signal s(t) is constructed by filtering a white noise
signal by a Gaussian centered at 300 Hz and whose
halfwidth is approximately equal to 100 Hz. Note that
the mean value of the time-frequency decompositions
of the acoustic pressure presented in the following sec-
tions are obtained by averaging the value obtained
for ten realizations of the signal s(¢). The acoustic
pressure obtained at a receiver located at * = 0 m,
y =4.9m and z = 3 m is studied hereafter.
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Figure 1. Source moving at a constant speed above an
impedance plane.

Two types of ground surface are investigated:
the first one is a perfectly reflecting surface and
the second one is an absorbing surface. For that,
an impedance plane is considered, using the Miki
model [13] of a semi-infinite ground of air flow re-
sistivity 100 kPa s m™.

3. Results for a perfectly reflecting
ground

3.1. Numerical solution

First, a perfectly reflecting surface is considered. The
time-frequency decomposition of the acoustic pres-
sure, corresponding to a short-time power spectral
density (PSD) of the pressure, at the receiver is shown
in Fig. 2. It is observed that the frequency contents
of the acoustic pressure is between 300 and 500 Hz
as the sources approaches the receiver (¢ < 0) and is
between 200 and 400 Hz as the source recedes from
the receiver (¢ > 0). This is obviously related to the
Doppler shift. Close to the receiver, the power spec-
tral density presents destructive interference patterns,
for which the PSD becomes very small. The location
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of these interferences can be obtained analytically as
for a non-moving source [4] and are plotted as dashed
lines in Fig. 2. A good agreement is obtained.
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Figure 2. Time-frequency decomposition of the acoustic
pressure at the receiver obtained from the numerical solu-
tion for a perfectly reflecting ground. Extract from [4].

3.2. Comparison to an analytical solution

dB/Hz

00 | 90
00 1
am
00 1
= 6 | 50
t,s

6
N4

=)
2

Figure 3. Time-frequency decomposition of the acoustic
pressure at the receiver obtained from the analytical solu-
tion for a perfectly reflecting ground. Extract from [4].

The PSD obtained in the previous section is com-
pared to that obtained from an analytical solution.
For a perfectly reflecting surface, the analytical so-
lution is the sum of two contributions, one from the
source and the other from the image source located
symmetrically with the respect to the ground plane to
the source. Therefore, the PSD of the acoustic pres-
sure is obtained from:

PSD[p](x, f,t) = PSD[s](f)Q(kp)pye§|G(x. f,1)[*,(2)
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where PSD]s] is the PSD of the source signal s(¢) and
where the Green’s function is given by :

eikRe,l

t) =ik
G(x, f,t) =1 <47TR671(1—MC059&1)2

ik Re 2

+47TR8_’2(1 — M cos 9572)> 3

with & = w/cp and w = 2xf. The parameters
(Re,1,c080c1) and (Re2,cos802) correspond to the
retarded time coordinates centered at the source and
at the image source, respectively. In addition, the term
Q(kD) is the spatial Fourier transform of the source
spatial distribution @) evaluated at the wavenumber
kp = k/(1 — M cosf. 1) and accounts for the non-
compacity of the source.

The PSD of the pressure obtained analytically is
plot in Fig. 3 as a function of the time and the fre-
quency. Compared to the numerical solution in Fig. 2,
it appears smoother as the source signal in the nu-
merical solution is obtained from a random signal.
However, it is observed that a very good agreement
between the two solutions is found. A quantitative
comparison has also been performed in [4], showing
that the deviations for a short-time equivalent sound
pressure level were lower than 0.5 dB.

4. Results for an absorbing surface

4.1. Numerical solution
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Figure 4. Time-frequency decomposition of the acoustic
pressure at the receiver obtained from the numerical solu-
tion for an absorbing ground. Extract from [4].

The numerical solution obtained for an absorbing
surface is depicted in Fig. 4. It is dramatically differ-
ent to that obtained for a perfectly reflecting surface
in Fig. 2. Indeed, the PSD of the acoustic pressure is
approximately 20 dB lower than that obtained for a
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perfectly reflecting surface as the source is far from
the receiver (]t/>0.7 s). In addition, the strong de-
structive interference pattern remarked in Fig. 2 does
not appear for this absorbing surface. The Doppler
effect is still observed as the maximum of the PSD is
obtained for a frequency close to 400 Hz as the source
approaches the receiver and for a frequency close to
300 Hz as the source recedes from the receiver.

4.2. Comparison to an analytical solution

The numerical solution presented in the previous
paragraph is now compared to an analytical solu-
tion. This solution is an extension of that proposed
recently for the sound radiation of a harmonic line
source above an impedance ground plane [9]. Analyt-
ical solutions [6, 7] have already been proposed for
this problem, but do not account for the frequency
variation of the surface impedance during the motion
of the source.
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Figure 5. Time-frequency decomposition of the acoustic
pressure at the receiver obtained from the analytical solu-
tion for an absorbing ground.

As usually done for this problem, the analytical so-
lution is given in the Lorentz space. Coordinates are
obtained from those in the physical space by the equa-
tions:

zr, =3 (x — Mcot), (4)
YL =Y, (5)
ZL =z, (6)

(7)

tr, =¥t — Mx/co), 7
with v = 1/4/1— M?. In the Lorentz space, the
Green’s function can be sought under the form G =
ée‘i“’“, where p is usually decomposed into a direct
and a reflected wave, i.e. G = GD + éR. The direct
wave is given by:

~ '74 .

Gp = 1 (zk—i—Ma:L

™

ikd;, — 1\ etkdr
—) ®

& g,
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with dy, = \/I% + y% + (ZL — ZL75)2 and 21,8 = VZS-
The reflected wave is obtained as a two-dimensional
inverse Fourier transform:

- 1 +oo . .
GR - F // F(kwvky)elkxuﬂkymdkwdky' (9)

The function F' is given by:

gkt kM

F(ky, k) =~ oo R(ky, ky)ehe,

with hy, = 21, + 21,5 and where R is a reflection coef-
ficient:

aZs|(w + keeM)Y?] — (k + ke M)y

R(ky, ky) = aZs|(w+ kzeM)V?] + (k 4 ke M)7]

and where a =  /k? — k2 — k2 corresponds to the ver-

tical wavenumber component. Note that the surface
impedance Zg in the reflection coefficient is not a con-
stant and is a function of the wavenumber k.

The evaluation of Gg is not straightforward be-
cause of the oscillatory nature of the integrand. More
specifically, the integrand is oscillatory inside the cir-
cle k2 + k2 < k? as a is real. Outside the circle, a is
purely iméginary and the integrand is exponentially
decaying as k; or k, increases. The computation of
the integral is performed in two steps. The integral
over k, is first evaluated and then the integration over
k, is performed. As for |k,| > k, « is purely imagi-
nary regardless of k., the integration over £, is com-
puted only for |k,| < k. To improve the accuracy and
to reduce the CPU time, a Clenshaw Curtis quadra-
ture method [14] is employed. Concerning the integral
over k,, as for —, /k? — kf/ <k, <,/k%Z— kf/, the in-
tegrand is oscillatory, a Clenshaw Curtis quadrature
method is again employed. For |k;| > |/k? — k2, the
integrand is exponentially decaying and a trapezoidal
rule is used.

The time-frequency decomposition obtained from
the analytical solution using Eq. (2), (8) and (9) is
represented in Fig. 5. A good concordance is observed
with the PSD obtained from the numerical solution
displayed in Fig. 4. In particular, the amplitude of the
PSD is retrieved. In addition, the small destructive
interference pattern around ¢ = 0 can also been seen
on the PSD obtained from the numerical solution.

5. CONCLUSIONS

The radiation of a source moving at a constant height
and at a constant speed about an impedance plane
was investigated. For that, a time-domain numerical
solver of the linearized Euler equations was employed.
Two types of ground surfaces were investigated, one
being a perfectly reflecting surface and the other one
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an absorbing surface. For each case, the numerical so-
lution was compared successfully to an analytical so-
lution. In addition, an analytical solution for a point-
source moving at a constant speed and at a constant
speed above a finite-impedance surface, based on pre-
vious developments, was proposed. As the evaluation
of the integral of the reflected wave of the analytical
solution requires a large CPU time, future work will
focus on its asymptotic evaluation in order to have an
accurate evaluation at long range and a fast computa-
tion. In addition, the effects of meteorological condi-
tions on the acoustic field due to moving sources will
be studied.
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