
 

 

 

 

 

 

 

 

 

 

 

 

Non-linear N wave source Impedance model
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Summary

A systematic solution of the non-linear Helmholtz resonator equation driven by the N-wave source is derived

asymptotically close to the resonance including the non-linear correction. The derived solution is used to obtain

the impedance at various harmonics of the driven frequency. The amplitude regime is chosen such that when

we stay away from the resonance condition, the non-linear terms are relatively small and neglected. Close to the

resonance frequency, the non-linear terms can no longer be neglected and algebraic equations are obtained that

describe the corresponding non-linear impedance for various harmonics of N wave.
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1. Introduction

The N wave sound also called as buzz-saw noise is very

common in practise e.g. the current typical Dutch elec-

tronic dance music, EDM. Of particular interest and con-

cern, is the buzz-saw sound produced by aircraft engine

while take off when the blade tip mach number exceeds

unity that evolves a shock wave pattern at the blade lead-

ing edge close to the duct wall. Since the geometry of each

blade is not ideally same, the shock waves are not par-

allel and interact with each other in the upstream of the

intake duct. This interaction which is (highly) non-linear

in nature results in a sound field that is not only the first

harmonic of the blade passing frequency but also contains

several other harmonics [1]. The amplitude of each har-

monic is inversely proportional to the it’s frequency. Typ-

ically, there is a difference of about 6 dB between 1BPF

and 2BPF and a difference of about 9.5 dB between 1BPF

and 3BPF and Also, the shock interaction is much stronger

in the upstream of the fan hence, the buzz-saw sound in-

creases a bit when we move away from the fan and gains

maturity at the shock interaction region and later starts to

decrease.

Typically, we can describe N wave pressure field by the

series

p′ex = F0

∞
∑

n=1

sin(nωt)

n
(1)

where ω is the blade passing frequency, 1BPF and F0 is

the amplitude of excitation. The liners are usually con-
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structed in such a way that the resonance frequency cor-

responds to 1BPF to absorb the dominant sound spectrum

and the impedance is usually obtained after ignoring the

non-linear effects. A time harmonic non linear model to

predict the tone noise from the turbofan engine was con-

structed by [2]. In the frequency domain, the impedance

information is vital to model the boundary condition hence

a model which could describe the relationship between

acoustic pressure and velocity is useful to maintain the un-

derstanding of the behavior of wall at the higher harmonics

of N-wave.

The non-linear corrections for a Helmholtz resonator

type impedance based on a systematic asymptotic solution

of the pertaining equations was derived by [3] when the

excitation source is harmonic in nature. The present work

focus on the on same asymptotic analysis when the res-

onator is excited by N wave source as shown in Fig. 1. The

excitation source is the summation of various harmonic

sources but the problem is (weakly) non-linear hence, the

final solution can not be represented as the linear combi-

nation of the individual solutions obtained by the single

harmonic excitation. The asymptotic methods are used to

solve the non-linear equation and the obtained solution is

used to derive the impedance after the Fourier disintegra-

tion of the source and solution.

2. Mathematical formulation

The Helmholtz resonator considered is shown in Fig1. A

simple and classic model, that includes non-linear sepa-

ration effects for the air flow in and out the neck, is de-

rived by [3]. If the volume of cavity V is large enough and

the cavity neck is acoustically compact i.e. kℓ ≪ 1, we

can neglect compressibility in the neck and integrate the
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line integral of the momentum equation along a streamline

from a point inside to a point outside as

ρ0

∫ ex

in

∂v

∂t
·ds+ 1

2ρ0(u
′2
in − u′2

in ) + (p′ex − p′in)

=

∫ ex

in

µ∇2
v
′·ds. (2)

Assuming that the streamline does not change in time (for

example the center streamline) we have

∫ ex

in

∂v

∂t
·ds =

d

dt

∫ ex

in

v·ds. (3)

The velocity line integral evidently scales on a typical

length times a typical velocity. If friction effects are mi-

nor and the velocity is reasonably uniform, we can use the

neck velocity u′

n with a corresponding length being the

neck length ℓ, added by a small end correction δ [4] to take

into account the inertia of the acoustic flow at both ends

just outside the neck (inside and outside the resonator).

Then we have:

∫ ex

in

v·ds = (ℓ + 2δ)u′

n. (4)

For the stress term line integral we observe that, apart

from u′

n itself, it will depend on flow profile, Reynolds

number, wall heat exchange, turbulence, separation from

sharp edges, and maybe more. Following Melling [5], we

will take these effects together in a resistance factor R,

which will a priori be assumed to be relatively small, in

order to have resonance and a small decay per period.

∫ ex

in

µ∇2
v
′·ds = Ru′

n. (5)

Due to separation from the outer exit, we have with out-

flow u′

in ≃ 0 with u′

ex = u′

in jetting out, while similarly

during inflow, u′

ex ≃ 0 with u′

in = u′

n jetting into the cav-

ity. The pressure in the jets, however, has to remain equal

to the surrounding pressure (p′ex and p′in respectively) be-

cause the boundary of the jet cannot support a pressure

difference. Therefore, we have altogether

ρ0(ℓ+2δ)
d

dt
u′

n+
1
2ρ0u

′

n|u
′

n|+Ru′

n = p′in −p′ex(6)

The second equation between p′n and u′

n is obtained by

applying the integral mass conservation law on the volume

V of the cavity. The change of mass must be equal to the

flux through the cavity neck, which is in linearised form

for the density perturbation ρ′in:

V
dρ′in
dt

= −ρu′

nSn ≈ −ρ0u
′

nSn (7)

Assuming an adiabatic compression of the fluid in the cav-

ity, we have p′in = c20ρ
′

in. Elimination of ρ′in and u′

n from

Sb

V p′in

u′

in ≃ 0

u′

n

ℓ

p′ex

Sn

Figure 1. Helmholtz Resonator

(6) by using (7) and redefining (ℓ + 2δ) := ℓ yields the

non-linear Helmholtz resonator equation

ℓV

c20Sn

d2p′in
dt2

+
V 2

2ρ0c40S
2
n

dp′in
dt

∣

∣

∣

∣

dp′in
dt

∣

∣

∣

∣

+
RV

ρ0c20Sn

dp′in
dt

+ p′in = p′ex (8)

where V is the volume of the cavity, c0 speed of sound,

ℓ the cavity neck length including the correction term, R is

the resistance term and Sb, Sn represents the base and neck

area respectively. Next, we non-dimensional the equation

in order to understand the relative effect of the various

terms. By dividing the non-linear damping term by the ac-

celeration term we find the pressure level 2ρ0c
2
0ℓSn/V at

which the non-linear damping would be just as large as

the other terms. So for a pressure that is a small fraction ε
of this level we have a problem with only little non-linear

damping. In addition we assume that the linear damping

is small and of the same order of magnitude as the non-

linear damping. Also, the driving amplitude p′ex will be an

order smaller than p′in. In order to make all this explicit

we introduce a small parameter (via the external forcing

amplitude), and make dimensionless

τ = ω0t, R = ερ0c0(ℓSn/V )1/2r,

p′in = 2ερ0c
2
0(ℓSn/V )y, p′ex = 2ε2ρ0c

2
0(ℓSn/V )F,

where 0 < ε ≪ 1. Suppose we excite the Helmholtz

resonator harmonically by external forcing p′ex =

C
∞
∑

n=1

sin(nωt)
n with resonance frequency ω. In the scaled

variables τ and F this becomes F = F0

∞
∑

n=1

sin(nωt)
n with

ω = Ωω0.

So we have a weakly non-linear forced oscillator as in

(9) where the initial conditions are not important as we are

interested in the stationary state.

d2y

dτ2
+ε

dy

dτ

∣

∣

∣

∣

dy

dτ

∣

∣

∣

∣

+εr
dy

dτ
+y = εF0

∞
∑

n=1

sin(nΩτ)

n
(9)

Near resonance when 1 − Ω2 = O(ε), the pressure am-

plitude rises to levels of O(1), and the assumption that

the non-linear damping is negligible is not correct. This

also corresponds with the most achieved damping. As the

physics of the problem essentially change when Ω2 =
1 + O(ε), we assume that Ω = 1 + ε∆. To obtain a uni-

form approximation later [6, sec 15.3.2], we remove the

ε-dependence from the driving force, so we make again a
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slight shift in the time coordinate. In addition, we trans-

late the origin by an amount θ(ε), such that the location of

the sign change of y′ is fixed and independent of ε. So we

introduce τ̃ = Ωτ − θ(ε) to obtain to the leading orders

(1 + 2ε∆)
d2y

dτ̃2
+ ε

dy

dτ̃

∣

∣

∣

∣

dy

dτ̃

∣

∣

∣

∣

+ εr
dy

dτ̃
+ y (10)

= εF0

∞
∑

n=1

sinn(τ̃ + θ)

n
. (11)

where θ is to be chosen such that y′(τ̃ ) = 0 at τ̃ =
(2N + 1)π/2. When we substitute the assumed Poincaré

expansions y(τ̃ ; ε) = y0(τ̃ )+ εy1(τ̃ )+ ε2y2(τ̃ )+ . . . and

θ(ε) = θ0 + εθ1 + . . . , and collect like powers of ε, we

find for y0

d2y0
dτ̃2

+ y0 = 0, y′0(
(N + 1)π

2
) = 0 (12)

with general solution y0(τ̃ ) = A0 sin(τ̃ ). The next order

y1 is

d2y1
dτ̃2

+ y1 = F0

∞
∑

n=1

sinn(τ̃ + θ0)

n
− 2∆

d2y0
dτ̃2

−
dy0
dτ̃

∣

∣

∣

∣

dy0
dτ̃

∣

∣

∣

∣

−r
dy0
dτ̃

= F0

∞
∑

n=2

sinn(τ̃ + θ0)

n
+ 2∆A0 sin(τ̃ )

−A0|A0| cos(τ̃ ) |cos(τ̃ )| − rA0 cos(τ̃ )

with cos(τ̃ ) |cos(τ̃ )| =
∞
∑

n=0

−1(n+1) cos(2n+1)τ̃

π(n2
−

1
4 )(n+

3
2 )

. When we

suppress the cos- and sin-terms, including the first term of

the Fourier expansion of cos(τ̃ ) |cos(τ̃ )|, we get the equa-

tions

F0 cos θ0 = −2∆A0, F0 sin θ0 =

(

8

3π
|A0|+ r

)

A0

with solution
[

(

8
3π |A0|+ r

)2
+ (2∆)2

]

A2
0 = F 2

0 (13)

tan(θ0) = −
8
3π |A0|+ r

2∆
. (14)

The y1 equation then

d2y1
dτ̃2

+ y1 =

∞
∑

n=1

[

F0
sin(n+ 1)(τ̃ + θ0)

(n+ 1)

+A0|A0|
(−1)n cos(2n+ 1)τ̃

π(n2 − 1
4 )(n+ 3

2 )

]

has the general solution

y1(t) =A1 cos τ̃ +B1 sin τ̃

−

∞
∑

n=1

[F0 sin(n+ 1)(τ̃ + θ0)

n(n+ 1)(n+ 2)

+
A0|A0|

4π

(−1)n cos(2n+ 1)τ̃

n(n+ 1)(n2 − 1
4 )(n+ 3

2 )

]

.

with the condition that y′1(
(2N+1)π

2 ) = 0, The constant

A1 is determined. Once A1 is determined, we move to the

next order asymptotic solution from (11), collecting the

like coefficients of ǫ2, we have

y′′2 + y2 =
[

∆2A0 sin τ̃ + 2∆A1 cos τ̃ + 2∆B1 sin τ̃ + ..
]

+

[

2∆A2
0 cos

2 τ̃ − 2A0A1 sin τ̃ cos τ̃ + 2A0B1 cos
2 τ̃

− 2A0F0

∞
∑

n=1

cos τ̃ cos(n+ 1)(τ̃ + θ0)

n(2n+ 1)

−
2A3

0

4π

∞
∑

n=1

(−1)n(2n+ 1) sin(2n+ 1)τ̃ cos τ̃

n(n+ 1)(n2 − 1
4 )(n+ 3

2 )

]

∗

sign(A0 cos τ̃ )

+
[

rA1 sin τ̃ − rB1 cos τ̃ − r∆A0 cos τ̃ + . . .
]

+ θ1F0(cos τ̃ cos θ0 − sin τ̃ sin θ0).

Suppressing the coefficients of the sine and cosine terms

as done previously, we can obtain the value of B1 and θ1
from the linear equations

(16
A0

3π
− r)B1 + (F0 cos θ0)θ1 =

− 2∆A1 −
16∆A2

0

3π
+ r∆A0

−
2A0F0

π

∞
∑

n=1

6 cos(nπ2 ) + 2 cos(3nπ2 )

n(n2 − 1)(n+ 3)
cos(n+ 1)θ0

(2∆)B1 − (F0 sin θ0)θ1 =

−∆2A0 +
8A0A1

3π
−

A3
0

27π2
(80− 9π2)− rA1

+
2A0F0

π

∞
∑

n=1

3 cos(nπ2 ) + cos(3nπ2 )

n(n+ 1)(n2 − 1)(n+ 3)
sin(n+ 1)θ0.

The series we see are truncated for a finite summation. The

solution y = y0 + εy1 +O(ε2) ascertains in principle (for

small ε) a better approximation of y than the leading or-

der approximation y0, which is important to obtain the ap-

proximation of the impedance for higher harmonics. Con-

sider first the leading order approximation. Equation (14)

for A0 has 2 real symmetric solutions (of which we nor-

mally need to consider only the positive one), but solving

A0 = A0(∆) is not straightforward. Therefore, it is useful

to consider the inverse, ∆ = ∆(A0), given by

4∆2 =
F 2
0

A2
0

−

(

8

3π
|A0|+ r

)2

(15)

Since ∆2 > 0 we see immediately that solutions exists

only for a finite interval in A0, while ∆ → ∞ only when

A0 → 0. In particular, we have

A0 ≃
F0

2|∆|
θ0 ≃ −

r

2∆
+ nπ, (16)

which is in exact agreement with the asymptotic behavior

for Ω = 1 + ε∆, ∆ large, corresponding to the linear so-

lution for harmonic source. In fact, by tracing the solution
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Figure 2. Solution of amplitude A0 and phase θ0 as a function of

∆, while r = F0 = 1.

parametrically as a function of ∆, we can see that if we

start with θ0 = 0 for ∆ → −∞, we end with θ0 = π for

∆ → ∞. In this way, we have obtained the expression for

A0 and θ0 shown in Fig. 2. It is also proved [3] that the A0

solution is stable and does not grow with time.

This way, we know the asymptotic solution y = y0 +
εy1 correct till O(ε). Next we formulate the impedance

calculation.

3. Impedance Calculation

The impedance Z formulation starts with the calculation

of the neck velocity, u′

n from p′in. We have

V

c20

dp′in
dt

= iω
V

c20
p′in = −ρu′

nSn.

The external normal velocity u′

ex is defined as the aver-

age over the whole area and therefore includes the porosity

factor Sn/Sb i.e. u
′

ex = Sn

Sb

u′

n .

Impedance is a linear concept and if we want to gener-

alize for non-linear problem, the most natural way would

be the ratio of component of pressure and velocity over a

particular frequency.

Hence, We define the impedance as the negative of the

ratio of the Fourier transform of the external pressure p′ex
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130dB

Figure 3. Impedance at observed frequency η = nω and N wave

excitation Ω = 1. Sn

Sb

= 0.5, r = 0.2, ω0
2π

= 1447Hz, L =

0.035m and ℓ = 0.002 m.

to the Fourier transform of the external velocity u′

ex. The

Fourier transform is taken over the frequency of interest,

which happen to be the integral multiple of the resonance

frequency ω0 in our case i.e.

Z(η) = −

1
2π

∞
∫

−∞

p′exe
−iηtdt

1
2π

∞
∫

−∞

u′

exe
−iηtdt

(η = nω0). (17)

Defined in this way, the impedance gives an understand-

ing of the behavior of the wall for different harmonics of

the N-wave. In other words, it is the response of the wall

(acoustic velocity) to a particular pressure component of

the source, characterized by its frequency. Of Most impor-

tance are the first 3 harmonics of N-wave because the later

harmonics are practically cut off.

4. Results

The above analysis is performed for a typical geometry of

the cavity liner with Sn

Sb

= 0.5, r = 0.2, ω0

2π = 1447Hz,

L = 0.035m and ℓ = 0.002 m. The acoustic pressure and

velocity are Fourier transformed to obtain the impedance

using (17).
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Shown in 3 is the impedance in the dimensional form

for different harmonics of the resonance frequency calcu-

lated for different driving amplitudes in SPL dB. We no-

tice that at ω = ω0, the impedance has the same value as

when the Helmholtz resonator is driven by the harmonic

source (and hence should be compared with [7]) and in-

creases for higher harmonics. The resistance Re(Z) term

is strongly dependent on the driving amplitude and grows

much higher for higher amplitudes. The reactance Im(Z)
term on the contrary, is practically independent of the driv-

ing amplitude. Essentially, the wall behaves like a hard

wall for very high harmonics of the natural frequency ω0.

The above analysis could be useful to optimize the liner

and choose a suitable geometry to find an agreement to

kill several dominant harmonics.

5. CONCLUSIONS

A systematic approximation of the hydrodynamically non-

linear Helmholtz resonator equation driven by N-wave is

obtained, including the resulting impedance if the res-

onator is applied in an acoustic liner. The resistance Re(Z)
term is found to be strongly dependent on the driving am-

plitude and grows much higher for higher amplitudes. The

reactance Im(Z) term on the contrary, is practically inde-

pendent of the driving amplitude. The wall behaves like a

hard wall for very high harmonics of the natural frequency

ω0. A much deeper insight in the problem could be ob-

tained by comparing the results with numerical computa-

tion [8], [9]. A comparison with the LES calculations is

planned ahead.
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