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Summary

An analytical model is developed to describe the acoustical properties of an array of resonators

arranged periodically upon a hard plane surface. The model relies on the scale separation between the

lattice constant of the 2D array and the long wavelength of sound at resonance. Due to this, small-

scale perturbations of the scattered field remain confined near the resonators within a boundary

layer. Two-scale asymptotic homogenization is applied to derive an effective frequency dependent

admittance of the surface. It is shown that tuneable surface conditions can be achieved around the

resonance frequency, ranging from a nearly total absorption of the acoustical waves to a quasi-total

reflection of sound with a phase-shift. The model is validated by comparing its predictions with

impedance tube and anechoic chamber measurements and with the Multiple Scattering Theory.

PACS no. 43.60.Fg, 43.20.Rz, 78.67.Pt, 11.80.La

1. Introduction

While surfaces with periodic profiles such as diffusers
[1] or air-backed microperforated panels [2] are used
widely to control acoustic waves in the middle and
high frequency ranges, their application at low fre-
quencies (e.g. below 300 Hz) is hindered by the sizes
required for an effective performance. In that range
of frequencies, the possibilities of wavefield manipula-
tions have been improved by the use of metamaterials,
especially those with inner resonances, e.g. [3, 4, 5].

Here, the concept of microstructured surface is re-
ported with resonant roughness elements arranged pe-
riodically on a rigid plane. If the lattice constant of the
2D array is much smaller than the long-wavelength of
sound at resonance, it is shown that such a corrugated
resonant surface is capable of either total sound ab-
sorption or pressure-release reflection, depending on
its design. The model developed here is based upon
the scale separation between the subwavelength lat-
tice size of the array and the long wavelength of sound
at resonance. As a result if it, small-scale multiple in-
teractions between the resonators are confined within
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a boundary layer which dictates the effective bound-
ary condition for the long-wavelength field.

In Section 2, the two-scale asymptotic homogeniza-
tion is applied to describe the resonant array in terms
of an effective surface admittance. In Section 3, plane-
wave reflection from the array is studied. In Section
4, the analytical model is compared with impedance
tube and anechoic chamber measurements. In Section
5, comparisons with Multiple Scattering Theory com-
putations are presented.

2. Homogenization

The resonant surface consists of identical linear res-
onators arranged in a two-dimensional Σ-periodic
array with the lattice constant ℓ, Figure 1. It is
placed (contactless) above the plane rigid boundary
Γ of the air-filled halfspace (at equilibrium, the den-
sity is ρe = 1.2 kg/m3, the atmospheric pressure
Pe = 1.013 × 105Pa, the adiabatic constant γ = 1.4
and the sound speed c =

√
γPe/ρe ≈ 343.8m/s).

The propagation of acoustic perturbations is stud-
ied in the linear harmonic regime at frequencies
f = ω/2π (time dependence e−iωt) close to the eigen-
frequency ωo/2π of the resonators. In that frequency
range, the sound wavelength λ = 2πc/ω is assumed to
be much larger than both the lattice size ℓ of the ar-
ray and the height d = O(ℓ) of the resonator-induced
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roughness. This scale separation is quantified by the
small scale parameter ǫ = 2πℓ/λ = ℓω/c≪ 1.

Excited by the long-wavelength acoustic field, the
resonators produce the particle velocity V at their
boundary S and act as mutually-interacting sec-
ondary sources: the velocity V is locally Σ-periodic
while also varying at the long-wavelength scale. That
induces locally-periodic perturbations (pressure p⋆

and particle velocity v⋆) confined in the vicinity of
the resonators, i.e. a boundary layer [6, 7], while the
long-wavelength field (pressure p and particle velocity
v) prevails some distance away from the surface.

Both long-wavelength and boundary layer fields
satisfy equations (1a,b) of momentum and mass con-
servation. Their superposition balances the velocity V

on the boundary S (outward normal nS) of the res-
onators, and satisfies the boundary condition on the
rigid surface Γ (normal n pointed at air):

iωρev = grad p ; iωρev
⋆ = grad p⋆ ; (1a)

divv = iωp/γPe ; divv⋆ = iωp⋆/γPe ; (1b)

(v + v⋆) · nS = V · nS on S; (1c)

(v + v⋆) · n = 0 on Γ. (1d)

The two-scale asymptotic homogenization [6, 8] is
applied. Two space variables are introduced: x for
the long-wavelength description and y = ǫ−1(x− x0

Γ)
for the local description of the surface over distances
|x − x0

Γ| = O(ℓ), where x0
Γ ∈ Γ is the center of the

period Σ. Differentiation is modified accordingly, e.g.
grad = grad

x
+ ǫ−1grad

y
where grad

x
and grad

y

are gradients with respect to x and y. Next, the fields
are expanded asymptotically in powers of ǫ≪ 1:

p(x) = p(0)(x) + ǫp(1)(x) + . . . (2a)

v(x) = v(0)(x) + ǫv(1)(x) + . . . (2b)

p⋆(x0
Γ,y) = p⋆(0)(x0

Γ,y) + ǫp⋆(1)(x0
Γ,y) + . . . (2c)

v⋆(x0
Γ,y) = v⋆(0)(x0

Γ,y) + ǫv⋆(1)(x0
Γ,y) + . . . (2d)

V(x0
Γ,y) = V(0)(x0

Γ,y) + ǫV(1)(x0
Γ,y) + . . . (2e)

At the leading order, the boundary layer fields are
governed by the following equations

grad
y
p⋆(0) = 0; (3a)

divyv
⋆(0) = 0 ; (3b)

(v(0) + v⋆(0)) · nS = V(0) · nS on S; (3c)

(v(0) + v⋆(0)) · nS = 0 on Σ ⊂ Γ; (3d)

v⋆(0) → 0 and p⋆(0) → 0 as y · n → ∞. (3e)

Combining equation (3a) with the evanescence con-
dition (3e) leads to p⋆(0) = 0 i.e. the long-wavelength
field p(0) prevails at the leading order, despite the
heterogeneous velocity V(0) and the surface corruga-
tion. Equation (3b) of incompressible flow suggests
that the boundary layer has a thickness O(ℓ) other-
wise wave propagation would induce compressibility
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Figure 1. A resonant surface. Σ-periodic arrangement (lat-
tice constant ℓ) of spherical resonators upon a rigid surface
and under the scale separation λ ≫ ℓ. Representation of
the column Ω of air above one period (used in integration).

effects. Applying the divergence theorem and using
the Σ-periodicity and evanescence of the boundary
layer, the integration of (3b) over the column Ω of air
above one period Σ (see Figure 1) leads to the balance
of flux:

∫

Σ

v⋆(0) · n dΣy +

∮

S

v⋆(0) · nS dSy = 0 (4)

Besides, since the velocity v(0)(x) is quasi-uniform at
local (y) scale and since S is a closed volume:

∫

Σ

v(0) · n dΣy+

∮

S

v(0) · nS dSy = |Σ|v(0) ·n(5)

where |Σ| is the area of Σ. Combining equations (4)
and (5) with (3d) and (3e), the effective boundary
condition is derived for the long-wavelength field:

v(0) · n =
1

|Σ|

∫

S

V(0) · nS dSy on Σ ⊂ Γ. (6)

Since only the flux q(0) =
∫
S
V(0) · nSdS is signifi-

cant, at the leading order (a) a local distribution of
acoustic moments (flux q(0) = 0) results in the bound-
ary condition equivalent to that of a rigid surface; (b)
the resonator-induced roughness has no significant ef-
fects on the boundary conditions; (c) the knowledge of
the exact velocity distribution V(0) at the resonators’
boundary is not required.

In response to the pressure p
(0)
Γ = p(0)(x0

Γ), the res-

onators produce the flux q(0) = Y
(0)
o p

(0)
Γ where Y

(0)
o is

the frequency-dependent admittance of the resonators
at the leading order. Using equation (6), the following
boundary condition for the long-wavelength velocity is

derived: v(0) ·n = Υ(0)p
(0)
Γ on Γ where Υ(0) = Y

(0)
o /|Σ|

is the effective surface admittance of the array.
In the following, superscripts (0) are omitted.
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3. Reflection from the surface

The resonant surface can be designed using resonators
with a Single Degree Of Freedom (SDOF) charac-
terized by the mass mo, the stiffness ko, the weak
damping ξo ≪ 1 and the surface area A from where
the flux q is emitted. According to Newton’s Second
Law, −ω2mouo = −ko(1− i2ξoω/ωo)uo−|A|pΓ where
ωo =

√
ko/mo is the eigenfrequency and uo the dis-

placement of the mass. The resonators’ admittance
Yo = q/pΓ = −iωuo|A|/pΓ is then:

Yo =
|A|2ωo

ko
F (ω) ; F (ω) =

i ω
ωo

1− i2ξo
ω
ωo

− ω2

ω2
o

.(7)

The ratio between the resonant surface admittance
Υ = Yo/|Σ| and the air admittance 1/ρec is given
by ρecΥ = ηF (ω), where η = |A|2ρec ωo/ (ko|Σ|).
In the low and high frequency regime (ω ≪ ωo and
ω ≫ ωo respectively), the resonant surface admit-
tance Υ is much smaller than that of the air, hence
the surface acts as a rigid boundary. Conversely, at
resonance ω → ωo, the admittance ratio reaches the
value ρecΥ = −η/2ξo which is large provided that
η/2ξo ≫ 1, hence the surface acts as a pressure re-
lease boundary.

To illustrate the effects of the resonant surface ad-
mittance, the response of the array to an incident
plane wave pI exp(iωdI ·x/c) is studied in the coordi-
nate system (O, e1, e2,n) where the origin O is at the
boundary Γ and the unit vector e2 ∈ Γ is in the plane
of incidence (dI ,n) with dI · e2 > 0. The incident
wave gives rise to a reflected wave pR exp(iωdR ·x/c)
which satisfies Descartes’ Laws: dR belongs to the
plane of incidence and dR · e2 = dI · e2. Denoting
θI > 0 the angle of incidence (counted from the nor-
mal n so that dI · n = − cos θI), the resonant surface
admittance Υ leads to the pressure reflection coeffi-
cient R = pR/pI = [cos θI + ρecΥ] / [cos θI − ρecΥ]
with the following frequency dependence:

R =
1− i2

(
ξo −

η
2 cos θI

)
ω
ωo

− ω2

ω2
o

1− i2
(
ξo +

η
2 cos θI

)
ω
ωo

− ω2

ω2
o

(8)

The amplitude of R is sensitive to the resonators’
damping (Figure 2): while the use of undamped res-
onators (ξo = 0) results in the total reflection of
the wave |R| ≡ 1 at any frequency, the introduc-
tion of weak damping (ξo ≪ 1) leads to a partial
reflection |R| ≤ 1. Far from resonance (ω ≪ ωo and
ω ≫ ωo) R → 1 as if the surface Γ were rigid. How-
ever, around the resonance, the reflection coefficient
displays a phase shift and a decrease in its amplitude,
which depend on the angle of incidence. In particu-
lar, the admittance ratio ρecΥ = −η/2ξo at resonance
ω ≈ ωo allows vanishing of the reflected wave (R→ 0)
if cos θI = η/2ξo ≤ 1. In this case, in the frequency
range close to resonance, the surface acts as a totally-
absorbing boundary.
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Figure 2. Reflection coefficient of the resonant surface
against normalized frequency: (a) amplitude (b) phase.
Calculations are performed with η = 6%, for various
damping ξo and angle of incidence θI .

4. Experimental validation

Reflective properties of a resonant surface made of
Helmholtz resonators are studied experimentally in
both impedance tube and anechoic chamber, Figure
3. The design developed in [4] to achieve the scale
separation around resonance is used. The resonator
consists of a spherical cavity of radius a = 2 cm, hav-
ing a circular opening A with diameter e = 4mm and
a long straight inner duct with diameter e = 4mm
and length b = 2cm (Figure 3(a)). It behaves as a
SDOF oscillator with the mass mo = ρe|A|b (air in
the duct) and the stiffness ko = γPe|A|

2/V (air in the
cavity), where V = 4πa3/3 − |A|b is the net volume
of the cavity. That provides the theoretical estimate
(2π)−1

√
ko/mo ≈ 238Hz for the eigenfrequency.

Measurements in an impedance tube (B&K type
4206, circular cross-section ΣT , diameter D = 10cm)
are performed at the University of Salford, U.K. on
N = {1, 4} resonators secured at the rigid end of
the tube with their apertures facing up (Figure 3(b)).
A boundary layer analysis (see Section 2) with inte-
gration performed over the tube ΩT (impervious lat-
eral surface) leads to the equivalent admittance con-
dition v · n = ΥT pΓ on ΣT (analogous to the pe-
riod) for the propagating waves in the tube, where
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Figure 3. Experimental prototypes. (a) Schematic view of the spherical Helmholtz resonator with details of its inner
duct; (b) Arrangement of 4 Helmholtz resonators in the impedance tube; (c) Arrangement of 961 Helmholtz resonators
on a rigid surface tested in the anechoic chamber.

ρecΥT = ηTF (ω) and ηT = N |A|2ρec ωo/ (ko|ΣT |) ≈
N × 0.018. Experiments with a single resonator pro-
vide the eigenfrequency ωo/2π ≈ 253Hz and the
damping ξo ≈ 6.6% (assessed from the −3dB-
bandwidth of the admittance resonance peak) that
are used in the analytical model. Results with 4 res-
onators are shown in Figure 4 and compared with
the model predictions. It is confirmed that the res-
onance leads to a phase shift and a decrease in am-
plitude of the reflection coefficient (at resonance, the
absorption coefficient is α = 1 − |R|2 ≈ 0.9). Anal-
ogous measurements with 4 non-resonant spheres re-
veal a nearly-total reflection, as expected. The model
is accurate despite the poor scale separation ǫT =
ωoD/c ≈ 0.46. Note that the roughness leads to a
phase-shift (< π/12 = O(ǫT )) neglected in the model
at the leading order.

Anechoic chamber measurements are performed at
the Open University, U.K. on an array of 31×31 = 961
Helmholtz resonators (identical to those used in the
impedance tube) arranged periodically in a square
lattice (spacing ℓ = 5cm) on a square rigid board
(width L = 1.524m, thickness 12.7mm) with their
apertures facing up, see Figure 3(c). The scale sepa-
ration is satisfied at resonance (ǫo = ℓωo/c ≈ 0.23)
and η ≈ 6%. The source (B&K type 4295) is posi-
tioned above the center of the board, at the distance
H = 2.47m. The insertion loss IL = −10log|pΓ/p0|

2

is shown in Figure 4(c) where pΓ and p0 are the
pressure recorded at the surface with and without
the resonators. As expected, the resonance leads to
a sound attenuation at the surface (IL ≈ 3.7 dB
at resonance) related to the absorption of the in-
cident field (absorption coefficient α ≈ 0.9). Since
the phase difference between the center and one cor-
ner of the board is [(1 + L2/2H2)1/2 − 1]Hωo/c ≈
π/3, the incident field is quasi-plane at the surface.
Hence, the data is compared with results presented
in Section 3 assuming θI = 0. The model predictions

(IL = −10log|(1 + R)/2|2, where R is given in equa-
tion (8)) are in good agreement with the data.

5. Numerical validation

In order to investigate the effect of total absorption
predicted by the analytical model in Section 3, a case
study is performed using resonators in the form of
slotted cylinders. When sufficiently long, they can be
modeled as 2D Helmholtz resonators and the Multi-
ple Scattering Theory (MST) can be applied to solve
the problem numerically. The case study deals with
the reflection of the normally-incident plane wave
PI = pI exp(−iωn · x/c) from a rigid surface Γ upon
which the 2D Helmholtz resonators are arranged ℓ-
periodically, see Figure 5(a). Resonators (labeled by
j ∈ Z integer) have a circular cross section with ra-
dius a = 2.5cm, a slot facing up with the width
2e = 4mm (angular opening 2ψ = 2e/a) and the spac-
ing ℓ = 7cm. The resonators’ center Cj are at the dis-
tance h = 2.7cm from the surface Γ (note h+ a < ℓ).

The boundary of the resonator is rigid, except for
the slot where the following conditions are applied:
the radial component of the particle velocity is uni-
form, equal to vslot = Υo〈ptot〉 where 〈ptot〉 is the
mean pressure over the slot and Υo = Yo/|A| is the
slot surface admittance, see equation (7). Its ratio
to the air admittance reads ρecΥo = σF (ω) where
σ = |A|ρecωo/ko. Inside, the Helmholtz resonator
has a perimeter-long, 4mm-wide duct wrapped around
the cavity, see Figure 5(a). A Finite Element Model
provides ωo/2π ≈ 230Hz and σ = 1.4 (basic mass-
spring analysis provide 250Hz and 1.6 respectively).
The design is such that the scale separation is sat-
isfied (ǫo = ℓωo/c ≈ 0.29) and η = 2eσ/ℓ ≈ 8%. A
damping ξo = 4% is assumed so that η/2ξo = 1 for
the resonant surface to act as an absorbing boundary
at resonance, see Section 3.

Following MST procedure (e.g. [5, 9]), the total
pressure field is decomposed into ptot = PI+PR+pscat
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Figure 4. Experimental results compared with the model
predictions. (a) amplitude and (b) phase of the reflection
coefficient from impedance tube measurements on 4 res-
onators or 4 non-resonant spheres. (c) Insertion loss from
anechoic chamber measurements on 31× 31 resonators.

where PR = pI exp(iωn·x/c) is the field reflected from
the rigid surface Γ were the resonators removed and
pscat =

∑
j(pj + p̃j) is the field scattered by the res-

onators’ array: pj is scattered by the (physical) res-
onator j and p̃j by its mirror-image from the rigid
surface Γ. Due to the periodicity, the contributions
of all resonators j to the scattered field are equal so
that, in the local polar coordinate system (Cj , rj , θj)
centered on j (angle θj is counted from e2):

pj(rj , θj) =
∑

n∈Z

AnHn(krj)e
inθj (9)

where Hn is the Hankel function of the first kind and
order n and An are unknown complex coefficients (in-
dependent from j). Because of the mirror-image sym-

metry, p̃j(r̃j , θ̃j) = pj(r̃j ,−θ̃j) in the polar coordi-

nate system (C̃j , r̃j , θ̃j) associated with the image-
resonator j. The coefficients An are found from the
boundary conditions applied on a single resonator, say
j = 0. For that purpose, the fields are (re)expanded
in the local coordinate system (C, r, θ) = (C0, r0, θ0).
Using the Jacobi-Anger expansion [10]:

{PI + PR}(r, θ) =
∑

n∈Z

UnJn(kr)e
inθ (10)

where Un =
{
e+ikh + (−1)ne−ikh

}
and Jn is the

Bessel function of the first kind and order n. Using
Graf’s addition theorem [10] for resonators j 6= 0:

pj(r, θ) =
∑

n∈Z

∑

m∈Z

Cnm
j AmJn(kr)e

inθ (11)

and similarly for p̃j(r, θ) with coefficients C̃nm
j , where:

Cnm
j = Hm−n(k

√
(jℓ)2)ei(m−n)(βj+π) (12a)

C̃nm
j = Hm+n(k

√
(jℓ)2 + 4h2)e−i(m+n)β̃j+imπ (12b)

and βj (resp. β̃j) is the angle between e2 and CCj

(resp. CC̃j). The radial component of the velocity
vtot = grad(ptot)/iωρe at the boundary r = a is ex-
panded using Fourier decomposition, providing:

∂

∂r

ptot

iωρe

∣∣∣∣
a

=
∑

n∈Z

Υo〈ptot〉
sin(nψ)

nπ
ein(θ−

π
2
) (13)

Due to orthogonality, boundary conditions can be for-
mulated separately for each harmonic einθ. This leads
to an infinite system of equations for the unknown
coefficients An, which is solved numerically by trun-
cation. This gives the pressure prefl = PR + pscat of
the wave reflected from the array.

The field prefl is computed above the resonator
j = 0 (abscissa x = x · e2 = 0) and at the distance
z = {2ℓ, 3ℓ} above the surface Γ. It is compared in
Figure 5(b) and (c) with the analytical model predic-
tions (pR = Reikz where R is given in equation (8)).
A good agreement between the MST and the analyt-
ical model confirms the phenomenon of a nearly total
absorption at resonance. A small discrepancy in the
phase of the reflected field is due to the surface rough-
ness; a similar discrepancy of the analytical model
with measurements has been noted in Section 4.

Finally, the spatial distribution of the pressure prefl

is presented in Figure 5(d) at the frequency of res-
onance and confirms the existence of the periodic
boundary layer. In accordance with the analytical
model, its amplitude is O(ǫpI) and it is confined in
the close vicinity of the surface array, with character-
istic distance of evanescence O(ℓ).
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Figure 5. Numerical model in 2D and comparison with the analytical model. (a) geometry of the resonant surface; (b)
amplitude and (c) phase of the reflected field at a distance z = x ·n away from the surface against frequency; (d) spatial
distribution of the field reflected from the surface at the frequency of resonance. Fields are normalized to the amplitude
pI of the incident wave.

6. Conclusion

An effective admittance has been derived for a reso-
nant surface with roughness. If a scale separation be-
tween the array periodicity and the sound wavelength
at resonance is satisfied, the resonant surface can act
as an all-pass or a no-pass filter for the reflected field,
with a phase-shift around the resonance frequency
(crucial to wavefront manipulation [3]). The model
has been validated against measurements (absorption
coefficient of 0.9 at 253 Hz using 961 Helmholtz res-
onators) and numerical calculations. It takes account
of the multiple interactions, the roughness, the res-
onators’ damping and the angle of incidence at a very
low computational cost. It is also applicable to surface
waves propagation and more complex arrangements
can be made, such as combining oscillators with dif-
ferent eigenfrequencies in a single period.
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