
 

 

 

 

 

 

 

 

 

 

 

 

Numerical integration methods for the solution of
Helmholtz equations with the Wave Based Technique
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Summary

The Wave Based Technique [7] is a method for airborne noise simulation, which is aimed for applications in the low- and

mid-frequency range. The focus of this article is on application to sound radiation of internal combustion engines. The

discretization of the Helmholtz equation, which is the basis for the Wave Based Technique, requires the computation of

certain surface integrals with high accuracy using numerical quadrature. Structural vibrations of a given surface (e.g.

the surface of an engine block), have to be mapped to the integration points. With increasing frequency the number of

integration points in these quadratures has to be increased to achieve the desired accuracy. Every time the integration

points are increased, the mapping procedure has to be done anew. To save computation time it is desirable to reuse the

integration points and the already computed mapping information whenever this is possible. This paper demonstrates a

strategy to calculate part of the mapping information in advance in order to increase the performance. The application

of these strategies is benchmarked using two engine block models of di�erent size. It is shown that the proposed strategy

can lead to a signi�cant reduction in computation time for models in which the mapping e�ort with the classical strategy

is large, while maintaining the accuracy.
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Figure 1. Helmholtz radiation problem

1. The Wave Based Technique for un-

bounded acoustic problems

1.1. Mathematical formulation

This article considers a 3-dimensional exterior acous-
tic radiation problem (Figure 1) on a domain Ω =
R3 − Ω+

1, where Ω+ ⊂ R3 is a bounded domain, ref-
ered to as scattering obstacle.

In absence of additional sound sources the acoustic
sound pressure p(r, t) satis�es the wave equation

∆p− 1

c2
∂2

∂t2
p = 0 (1)

where c denotes the speed of sound, cf. [4]. Since a
solution of (1) should be determined by its Fourier in-

1 The notation Ω means the topological closure of Ω, i.e. Ω
together with its boundary.

tegral p(r, t) =
∫∞
−∞ pω(r)eiωt dω, it su�ces to study

time-harmonic solutions p(r, t) = pω(r)eiωt, with cir-
cular frequency ω. Substituting into (1) yields that
the steady-state pressure pω(r) satisfy

∆pω + k2pω = 0. (2)

This is Helmholtz' equation with wave number k = ω
c .

The particle velocity v(r, t) has the same time-
harmonicity v(r, t) = vω(r)eiωt as the sound pressure.
The steady-state particle velocity vω satis�es

vω(r) =
i

ωρ
∇pω(r) (3)

where ρ is the ambient �uid density.

Di�erent boundary condition types will be considered.
It is assumed that the boundary of Ω is partitioned
as Γ := ∂Ω = Γp]Γv ]ΓZ as depicted in Figure 1, on
which the following boundary conditions are imposed.

• On Γp a pressure boundary condition

pω(r) = pb(r) for each r ∈ Γp (4)

for a given boundary pressure function pb on Γp.
• On Γv a normal velocity boundary condition

nTvω(r) = vb(r) for each r ∈ Γv (5)

for a given boundary normal velocity function vb
on Γv and the outward normal vector 2 n on ∂Ω.

• On ΓZ a normal impedance boundary condition

nTvω(r)− 1

Zb(r)
pω(r) = 0 for each r ∈ ΓZ (6)

for a given normal impedance function Zb on ΓZ .

2Outward-pointing is meant as �out of Ω� here, but into the
obstacle Ω+.
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• In addition the Sommerfeld radiation condition

∂

∂r
pω(r) + ikpω(r) = o(r−1) as r →∞ (7)

is imposed uniformly in all directions3. Physically
it means that the acoustic wave is not re�ected at
in�nity. It ensures that the boundary value problem
is well-posed on unbounded domains. For details
the reader is refered to [3, 4].

1.2. Solution using the wave based technique

The idea of the Wave Based Technique (WBT) is
to decompose the domain Ω into subdomains, to im-
pose additional smoothness boundary conditions on
the subdomain interfaces, and to use a linear combina-
tion of exact solutions of the Helmholtz equation (2)
on each subdomain as an ansatz. Subsequently the
boundary conditions are enforced by an appropriate
choice of parameters in this ansatz. For further infor-
mation on WBT the reader is refered to [7, 2]

The �rst step is to decompose Ω into a bounded and
an unbounded part by introducing an arti�cial trunca-
tion boundary ΓT . The bounded and unbounded part
are denoted by ΩB and ΩU respectively. The bounded
part ΩB is decomposed into subdomains Ω1, . . . ,ΩN .
To ensure convergence of the wave based method the
geometry of these subdomains has to be restricted4.

For the pressure inside the domain Ωα the ansatz

pα(r) =

nα∑
i=1

3∑
j=1

p
(α)
ij Φ

(α)
ij (r) (8)

is used. The parameter nα depends on Ωα and on the

frequency ω. The functions Φ
(α)
ij , given by

Φ
(α)
ij (x) :=


e−ik

(α)
ix x cos(k

(α)
iy y) cos(k

(α)
iz z) j = 1

cos(k
(α)
ix x)e−ik

(α)
iy y cos(k

(α)
iz z) j = 2

cos(k
(α)
ix x) cos(k

(α)
iy y)e−ik

(α)
iz z j = 3

(9)

are called wave functions. In order for Φ
(α)
ij to be an

exact solution of the Helmholtz equation (2) it is nec-
essary and su�cient that the equation

(k
(α)
ix )2 + (k

(α)
iy )2 + (k

(α)
iz )2 = k2 (10)

be satis�ed.

The pressure expansion in the domain ΩU reads

pU (r) =

nU∑
l=0

l∑
m=−l

p
(U)
lm Φ

(U)
lm (r). (11)

3 Boldface letters are used to denote vectors. The plain letter r
denotes the length of the vector r.

4 Convex domains are admissible, although more general do-
mains could be allowed, as well, cf. [5].

The functions

Φ
(U)
lm (r, φ, θ) := hl(kr)Y

m
l (φ, θ) (12)

are called radiation functions5. They satisfy the
Helmholtz equation on ΩU and also the Sommerfeld
radiation condition (7), cf. [4]. The parameter nU
again depends on the frequency.

For α = 1, . . . , N, U6 the notations Γαp := Γp ∩ Ωα,
Γαv := Γv ∩ Ωα and ΓαZ := ΓZ ∩ Ωα are used. Fur-
thermore the following residuals are de�ned to enforce
the boundary conditions (4), (5) and (6).

R(α)
p (r) := pα(r)− pb(r) for r ∈ Γαp (13)

R(α)
v (r) :=

i

ρω
nT∇pα(r)− vb(r) for r ∈ Γαv (14)

R
(α)
Z (r) :=

i

ρω
nT∇pα(r)− 1

Zb(r)
pα(r) for r ∈ ΓαZ .

(15)

At the domain interfaces Γαβ := Ωα∩Ωβ the residuals

R(α,β)(r) :=
i

ρω
nT∇(pα(r) + pβ(r))

+
1

Zc
(pα(r)− pβ(r)) for r ∈ Γαβ

(16)

are introduced. The parameter Zc weights the relative
importance of the pressure term against the normal
velocity term.

For brevity's sake the notation

〈f, g〉Γ :=

∫
Γ

fg dS (17)

is employed for surface integrals.

Instead of requiring that the residuals vanish, it is
merely demanded that they vanish in average. This is
expressed in the weighted residual formulation, which
reads

〈nT∇q,R(α)
p 〉Γαp + 〈q,R(α)

v 〉Γαv + 〈q,R(α)
Z 〉ΓαZ

+
∑
β 6=α

〈q,R(α,β)〉Γαβ = 0 (18)

for α = 1, . . . , N, U and all q from an appropriate class
of test functions7.

5 Here hl are spherical Hankel functions and Ym
l are spherical

harmonics.

6 To treat the domains Ω1, . . . ,ΩN and ΩU in a coherent way,
the index α runs through the numbers 1, . . . , N and U . Here U
is merely a symbol, not a number.

7 It will be assumed this class contains at least the wave func-
tions (9) and the radiation functions (12).
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By plugging the expansions (8) and (11) into equa-

tion (18) and using Φ
(α)
ij with α = 1, . . . , N, U as test

functions, the following linear system is obtained.

nα∑
k=1

∑
l

a
(α)
ijklp

(α)
kl +

∑
β 6=α

nα∑
k=1

∑
l

c
(α,β)
ijkl p

(β)
kl = b

(α)
ij (19)

where the sums over l run through 1, 2, 3 for α =
1, . . . , N and through −k, . . . , k for α = U and the

coe�cients a
(α)
ijkl, c

(α,β)
ijkl and b

(α)
ij are given by

a
(α)
ijkl =〈nT∇Φ

(α)
ij ,Φ

(α)
kl 〉Γαp +

i

ρω
〈Φ(α)

ij ,n
T∇Φ

(α)
kl 〉Γαv

+
i

ρω
〈Φ(α)

ij ,n
T∇Φ

(α)
kl 〉ΓαZ − 〈Φ

(α)
ij ,

Φ
(α)
kl

Zb
〉ΓαZ

+
i

ρω

∑
β 6=α

〈Φ(α)
ij ,n

T∇Φ
(α)
kl 〉Γαβ

+
1

Zc

∑
β 6=α

〈Φ(α)
ij ,Φ

(α)
kl 〉Γαβ (20)

c
(α,β)
ijkl = 〈Φ(α)

ij ,n
T∇Φ

(β)
kl 〉Γαβ −

1

Zc
〈Φ(α)

ij ,Φ
(β)
kl 〉Γαβ

(21)

b
(α)
ij = 〈nT∇Φ

(α)
ij , pb〉Γαp + 〈Φ(α)

ij , vb〉Γαv . (22)

By de�ning

Aα := (a
(α)
ijkl)(i,j)

(k,l)

Cαβ := (c
(α,β)
ijkl )(i,j)

(k,l)

bα := (b
(α)
ij )(i,j) pα := (p

(α)
ij )(i,j)

(23)

the linear system (19) can be written in matrix form:

A1 C12 C1N C1U

C21 A2 C2N C2U

CN1 AN CNU

CU1 CUN AU





p1

p2

pN

pU



 =

b1

b2

bN

bU



 . (24)

2. Calculation of the WBT matrix

2.1. Numerical Integration

In order to compute the coe�cients (20), (21) and
(22) integrals over a surface Γ ⊂ R3 have to be evalu-
ated. For details on numerical integration the reader
is refered to [8]. Γ is assumed to be given in terms of
a parametrization x : [−1, 1]2 −→ Γ ⊂ R3.

An integration rule for the surface Γ can be obtained
via pullback of a 2-dimensional integration rule

∫
[−1,1]2

F dξ dη ≈
n∑
i=0

ωiF (ξi, ηi). (25)

for the reference quadrangle [−1, 1]2, along the
parametrization x:

∫
Γ

F dS =

∫
[−1,1]2

(F ◦ x)

∣∣∣∣∣∣∣∣∂x∂ξ × ∂x

∂η

∣∣∣∣∣∣∣∣ dξ dη
≈

n∑
i=0

ωi

∣∣∣∣∣∣∣∣∂x∂ξ × ∂x

∂η

∣∣∣∣∣∣∣∣ (ξi, ηi)F (x(ξi, ηi))

=

n∑
i=0

ω′iF (xi, yi, zi) (26)

with new integration points and weights given by

(xi, yi, zi) := x(ξi, ηi) and ω
′
i := ωi

∣∣∣∣∣∣∂x∂ξ × ∂x
∂η

∣∣∣∣∣∣ (ξi, ηi).
The above mentioned 2-dimensional integration
scheme for the reference quadrangle can be con-
structed out of a 1-dimensional integration rule∫

[−1,1]

F (ξ) dξ ≈
m∑
i=0

αiF (ξi) (27)

by the tensor product construction∫
[−1,1]2

F dξ dη ≈
m∑
i=0

m∑
j=0

αiαjF (ξi, ξj). (28)

For the 1-dimensional rule (27) the following will be
considered:

Gauss-Legendre rule For the (n+1)-point Gauss-
Legendre quadrature the integration points ξi are the
zeros of the Legendre polynomial Pn. The weights are

αi =
2

(1− x2
i )P

′
n(xi)2

. (29)

The Gauss-Legendre rule is exact for polynomials of
degree 2n+ 1 or less.

Simpson's rule For even n the integration nodes
are ξi = −1 + 2

n i for i = 0, . . . , n. The weights are

αi =


8

3n i = 1, 3, . . . , n− 1
4

3n i = 2, 4, . . . , n− 2
2

3n i = 0, n

. (30)

Simpson's rule is exact for polynomials of degree ≤ 3.

2.2. Inverse Distance Weight Mapping

In practice the problem geometry is frequently given
as a Finite Elements model and the boundary val-
ues are given at the FE nodes. In order to calculate
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the integrals for WBT, knowledge of the boundary
values in the integration points is needed. These val-
ues can be approximated by an interpolation method
called Inverse Distance Weighting (IDW) [9]. A brief
describtion of this method is given here.

A su�cently �well-behaved� function f : D −→ R
whose values fi := f(xi) are known only in certain
sample points x0, . . . , xn ∈ D, can be approximated
in a query point x ∈ D by

f̄(x) :=

{
1∑n

i=0 wi(x)

∑n
i=0 wi(x)fi x /∈ {x0, . . . , xn}

fi x = xi (31)

with the weights wi(x) = 1
||x−xi||p . Here p is a positive

constant, which controls how much in�uence the close
sample points have on the approximation. If p is in-
creased, the weights of sample points farther away will
be small, thus decreasing their contribution to (31).

Normally the number of points n is very large, so it
might be ine�cient to calculate (31). Instead a search
for the k points among x0, . . . , xn closest to x is per-
formed �rst and then (31) is modi�ed to only sum
up those points. This step can be done using a data
structure which supports e�cient k-nearest neighbor
searches, like kd-trees [1] or Octrees [6].

3. Comparison of di�erent methods

3.1. Work�ow

In this subsection a short describtion of the applied
wor�ow is given. The model geometry is given as Fi-
nite Element mesh with prescribed boundary values in
the nodes. The FE model is enclosed by a rectangular
bounding box, which in turn lies inside the truncation
sphere. The part of the engine exterior, which lies in-
side the bounding box, is partitioned into rectangular
domains. The part between the bounding box and the
truncation sphere is partitioned into six sphere caps,
which are called spherical adaptation elements.

A full simulation consists of the calculation of a dis-
crete range of frequency steps. For each frequency sev-
eral steps are executed:

1. Generation and setup of the integration points and
weights, as described in subsection 2.1.

2. IDW Mapping of the boundary values from the FE
nodes to the integration points, see subsection 2.2.

3. Calculation of the entries of the WBT matrix (20),
(21) and the right-hand-side (22).

4. Solution of the WBT system (24).
5. Post-Processing, e.g. computation of the pressure

and velocity �elds at prede�ned response points.

3.2. Description of the test cases

Case 1 The Gauss-Legendre rule together with
an incremental increse of the number of integration

points for each surface per frequency is used. In
some frequency steps the integration points might not
change. In this case the k-nearest neighbor data from
the mapping is preserved from the previous frequency
and used to calculate (31) for the current frequency.

Case 2 Like Case 1, but instead of Gauss-Legendre,
Simpson's rule is used. In each frequency step the
same number of integration points as in Case 1 is used.

Case 3 Here the Gauss-Legendre rule is used, but
instead of increasing the number of integration points
with each frequency, the same number of integration
points is used for all frequencies, namely the one used
for the highest frequency in the other two cases. Al-
tough this will increase the times needed for the com-
putation of the coe�cients (20), (21) and (22) in all
frequencies except the highest, this has two impor-
tant advantages. Since the integration points do not
change, recalculation of the k-nearest neighbor infor-
mation in the IDW mapping is never required and
it also eases the post-processing of the results since
for all frequencies the same nodes are used. However
it is a priori not clear that the choice of the highest
frequency in the range does not in�uence the results.
For example, does the computation yield the same
result at 1000 Hz, if we compute it once using 2000
Hz as upper bound and once using 3000 Hz as upper
bound. A similar question arises, if one calculates up
to a certain frequency and later decides to continue
the calculation for frequencies above. In this case the
mapping has to be recalculated before continuing.

3.3. Description of the used models

The proposed strategies are validated using two indus-
trial engine models. The model geometries are given as
Finite Element meshes with prescribed velocity exci-
tations in the nodes. The simulations for both models
were performed from a certain start frequency with a
constant frequency step size up to an end frequency.

Table I summarises the details on the models.

Model 1 is an inline 4-cylinder Diesel engine with
relatively small number of FE nodes. It is to be ex-
pected that the IDW mapping takes only a small part
of the overall computation time.

Model 2 is an inline 4-cylinder gasoline engine with
high number of FE nodes. IDW mapping for this
model is expected to be rather time consuming.

3.4. Results

The calculations are OpenMP parallelized and per-
formed on a Intel(R) Core(TM) i7-4900MQ 2.80GHz
CPU with 16.0 GB RAM. Six cores are used.

In Case 3 the highest simulation frequency has a direct
in�uence on the number of integration points used on
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Table I. Key information about the used models
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Figure 2. Sound Pressure Level comparison for di�erent
upper frequency bounds (Model 2)

each surface. Hence it is �rst con�rmed that using
a di�erent upper frequency bound in the calculation
leaves the results invariant. To con�rm this, strategy
3 is performed with di�erent upper frequency bounds:
1000 Hz, 2000 Hz, and 3000 Hz. Figure 2 shows the
Sound Pressure Level at a response point, 1 m above
the engine of Model 2. The results are compared in
the overlaps of these ranges and show that the choice
of the frequency bound barely in�uences the result.

Figure 3 shows the pressure response at a response
point in a distance of 1 m above the engine. In direct
comparison between cases 1, 2 and 3, all three strate-
gies yield very similar results for the exterior pressure
�eld except for small deviations, but the relative error
lies well below 2%.

The performance results are summarised in Figures
4, 5 and table II. The terms IDW Mapping, Matrix
and Solve refer to steps 2. to 4. of subsection 3.1. The
run-time di�erences between strategies 1 and 2 are
negligible in both models. As expected the IDW map-
ping in Cases 1 and 2 is rather inexpensive for Model
1. Here the use of strategy 3 does even increase the
computational time needed about 7%. In Model 2 the
IDW mapping consumes about two �fths of the over-
all computation time in Cases 1 and 2, but less than
one sixth in Case 3, thus reducing the total simulation
time by about 15% from 1h 38m to 1h 19m.

The tooth shape of the graphs in Cases 1 and 2 of
Figure 5 results from the fact that in some frequency
steps it is not necessary to increase the number of in-
tegration points to achieve the desired accuracy. Thus
the IDW mapping is reused at these frequencies. This
can also be observed in Model 1, but the IDW map-

Table II. Performance results (in s)

ID
W

M
a
tr
ix

S
o
lv
e

T
o
ta
l

Model 1 Case 1 91 2664 1579 4334

Model 1 Case 2 93 2715 1653 4461

Model 1 Case 3 36 3121 1526 4683

Model 2 Case 1 2361 2274 1282 5917

Model 2 Case 2 2517 2216 1265 5998

Model 2 Case 3 765 2756 1222 4743

ping in this model takes so few time that one can
barely see the tooth shape in Figure 4.

4. Conclusion

It has been shown that calculating the mapping infor-
mation in advance for a large number of integration
points can increase the performance of WBT calcula-
tions for models with large number of FE nodes, while
it might be disadvantageous in small models. In any
case the accuracy of the results is maintained.
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Figure 5. Performance results Model 2: Total run-time (above) and run-time per frequency (below)
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