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Summary
Using networks of acoustic vector sensors for sound source localization and tracking has become of
research interest given its importance in a great variety of applications. An Acoustic Vector Sensor
(AVS) consists of two or three orthogonal particle velocity sensors in combination with a sound
pressure microphone. In several publications it has been proven that multiple sources can be located
in three dimensions with a single AVS. Furthermore, it has been demonstrated that ground-based
two-dimensional acoustic vector sensors can be used to estimate the elevation of a single source. Two
different algorithms for harmonic source localization using a distributed and synchronized network
of 2-D AVS are presented and tested in this work. Both algorithms are based on the Direction Of
Arrival (DOA) estimate performed by each sensor in the network for every dominant component of
the source. Localization and tracking results based on simulations and two extensive measurements
of flying aircrafts are also presented and discussed. Some of the main factors that affect the detection
and the localization range are pointed out.

PACS no. 43.60.Jn, 43.60.Fg

1. Introduction

With the number of flying vehicles going up, as
helicopters, planes, Radio Controlled (RC) aircrafts
or Unmanned Aerial Vehicles (UAVs) , also the need
increases to monitor their trajectories in the space.
For instance, in case of a disaster, where helicopters
can bring in first responders, medical aid and food,
and evacuate the injured, a rapid deployable air
traffic control system is a desirable matter. As an
alternative to radar, a network of wireless distributed
Acoustic Multi Mission Sensors (AMMSs) can be
used to detect, locate and track aircrafts.

Traditionally, arrays of sound pressure transduc-
ers have been used to obtain acoustic directional
information by estimating the direction of arrival
of a sound wave using relative phase differences
[2, 3, 4]. However, such an array obtains a difficult
to handle size when trying to cover low frequencies
and it requires spatial coherence between transducers
for the whole frequency range of interest. It is well
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known that the spatial coherence between transduc-
ers decreases as the size of the array increases [5],
specificaly for high frequencies [7]. Therefore, any
attempt to cover lower frequencies by increasing the
spacing between transducers will lead to a reduction
of the performance of the system at higher frequencies
due to aliasing [6, 7] and the lack of cross-correlation
or coherence between receivers [5]. Furthermore,
since different kind of flying vehicles have different
spectral signatures and potentially disjoint frequency
ranges, it is a challenging task to get a microphone
array geometry that works reasonably well for all
the potential targets with an easy to handle size.
Moreover, the acoustic pressure transducers of the
array need to exchange broad band signals in order
to estimate the direction of the sound. It should be
noted that the complexity and the price of the system
increase with the size of the array. All this makes no
feasible to use arrays of sound pressure transducers
to locate all kind of flying targets.

An Acoustic Multi Mission Sensor (AMMS) con-
sists of a sensor unit (based upon two orthogonally
placed acoustic particle velocity sensors and a collo-
cated sound pressure transducer) that are connected
to a Digital Signal Processor (DSP) and covered
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under a wind and rain resistant open foam windcap.
The 30 cm diameter compact device weighs around
2 kg and consumes around 2 W electrical power.
Acoustic Multi Mission Sensors can provide a better
and simpler measurement or source model than
microphone arrays because the AMMS can measure
the effective direction of the significant components
of the sound at a single point.

Since the particle velocity vector was invented
some decades ago, some algorithms for acoustic
source localization using a distributed network of
AVSs have been proposed, but no one has been
tested in real life. Nehorai and Hawkes [9] proposed
two different algorithms to estimate the position of
a single source in the space: The Weighted Least
Squares (WLS) algorithm and the ReWeighted Least
Squares (RWLS) algorithm. Both are referred in
the literature as triangulation methods because the
estimation of the position of the source is made
using only the DOA of the sound at every sensor
position. A 2-D version of both algorithms together
with a simple Kalman filter have been used for this
investigation. Recently, a distributed particle filter
based approach was proposed with the aim of solving
the multi-source scenario [10]. It should be noted
that the multi-source localization problem could also
be solved by using the WLS and RWLS algorithms,
as commented in [9].

The rest of the article is organized as follows. The
measurement model is described in the next section
and the source localization algorithms have been used
in this work are described in section III. The sim-
ulations and the measurements are briefly explained
in section IV. The results of the simulations and the
measurements are presented in section V together
with a brief discussion about the main factors that
can affect the performance of both algorithms. Finally
conclusions and future related work are discussed in
section VI.

2. Measurement model

The measurement model used here is the one pre-
sented in [9]. A single source located at the position
Θ ∈ R3 that radiates bandlimited spherical waves
into an isotropic homogeneous field is assumed. We
also assume that a network of Ns AMMSs is deployed
on the ground, being p1, ...,pNs

the position of the
sensors. Assuming far field for the whole frequency
range of interest (plane wave front), we can relate the
particle velocity and the pressure of the direct sound
at any point r using the Eulerńs formula.

v(r, t) = p(r, t)ñ/(ρ0c) (1)

where v is the velocity vector, p is the pressure, ρ0 is
the density of the medium and c is the speed of sound,

and ñ is a unit vector from the source to r. Thus, in
the free space, the output of a 3D AVS located at r
can be written as follows.

y(t) =

[
yp(t)
yv(t)

]
=

[
1
u

]
p(t) + e(t) (2)

Since for the ground scenario the estimation of the
azimuth of the source is independent of the reflective
properties of the ground where the sensor is deployed
[8, 9], a simplified measurement model for the single
source localization scenario in 2D can be derived. It
can be thought as a set of unit vectors in 2D, ûi,
pointing from every sensor position to the projection
of source position onto the horizontal plane, which we
call θ(t). Then, for a fixed θ = [x y]T and in absence
of noise (e(t) = 0), the measurement model is fully
defined by the next system of equations,

pi + liûi = θ (3)

where li is the norm of the projection of the vector
from pi to the actual 3D position of the source onto
the horizontal plane.

3. 2D position estimation of the
source

Let us assume that every sensor periodically trans-
mits its local estimate of the azimuth of the source
ûi to the central node of the network and that the
central node knows an estimate of the position of all
the sensors. As commented in [9], in practice both the
estimation of the position of the sensors and the bear-
ing estimate performed by every sensor will contain
errors. Hence the estimation of the position should
be made in some least squares sense by taking as a
solution the closest point to all the lines from the sen-
sor position in the direction of the source. Thus, the
closed form estimate of the position proposed by Ne-
horai and Hawkes, called WLS algorithm is shown in
Eq. 4,

θ̂ =

[(
Ns∑
i=1

wi

)
I − ÛWÛT

]−1
Aw (4)

where wi is the weight corresponding to the accuracy
of each ûi given by the i−th sensor, Û = [û1, ..., ûNs

],
w = [w1, ..., wNs

]
T , W = diag(w), I is the identity

and

A =
[
(I − û1û

T
1 )p1, ..., (I − ûNs

ûT
Ns

)pNs

]
.

The second algorithm proposed in [9] is called
RWLS, because the weights are recalculated after get-
ting a first guess of the position of the source. Since
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the errors in the estimation of the azimuth from sen-
sors far from the source have a greater effect upon xs
than those from sensors nearby, the weights wi are
divided by the square of the distance from the sensor
to the estimation of the source position. In our case,
it is the distance from the sensor to estimation of the
projection of the source position onto the horizontal
plane, l̂i.

w′i = wi/(l̂
2
i ) (5)

Therefore, the RWLS estimator for the source po-
sition can be written as shown in Eq. 6.

θ̂R =

[(
Ns∑
i=1

w′i

)
I − ÛWÛT

]−1
Aw (6)

It should be noted that both algorithms are not
made for locating all kind of vehicles in motion,
because the differential delays between sensors and
the observation interval of the network are assumed
negligible relative to the inverse of the speed of the
target [9]. It can be a quite realistic assumption for
underwater acoustics but it is simply not true for
most flying and ground vehicles. Hence, both WLS
and RWLS may be seen as a linearization of the
underlying non-linear problem that can work well
when the mach number of the source, Ms = cs/c,
is much less than 1, where cs is the speed of the target.

3.1. Tracking

Assuming that is the case and that θ̂R is an unbiased
estimator of θ, some information about the dynam-
ics of the process (a real source in motion) should
be used in order to get a smoother estimation of the
path. A basic direct Kalman filter can be used for
this purpose. It is a common filter in control theory
that implements a predictor-corrector type estimator
that is the optimal recursive filter in the sense that it
minimizes the estimated error covariance [12]. A con-
stant velocity model is assumed for the source, and
therefore, the state vector of the Kalman filter for the
k−th snapshot is a 4x1 dimensional vector containing
the 2D coordinates of the source and their derivatives
with respect the time.

θ̂k =

[
xk

dxk
dt

yk
dyk
dt

]T
(7)

The discrete Kalman filter time update equations
are [11],

θ̂
−
k = M θ̂k−1 +Bvk (8)

P−k = MPk−1M
T +Q (9)

and the Kalman filter measurement update equations
are,

Kk = P−k H
T (HP−k H

T +R)−1 (10)

θ̂k = θ̂
−
k +Kk(zk −Hθ̂

−
k ) (11)

Pk = (I −KkH)P−k (12)

where the matrix M relates the state in the previous
step to the state at the current step, the matrix B is
an optional control input, P−k is the a priori estimate
error covariance, Pk is the a posteriori estimate error
covariance, Q is the covariance matrix of the process
noise, H is a matrix that relates the previous state
with the k − th observation, called here zk, which is
the output of the WLS or the RWLS algorithm, Kk is
the Kalman filter gain at the k− th snapshot and R is
the covariance matrix of the measurement noise. For
this investigation, both the covariance matrix of the
measurement and the process noises are estimated via
forgetting factor (as in the Recursive Least Squares
Algorithm [11]) and both transition matrices can be
written as shown in Eq. 13 and Eq. 14.

H =

[
1 ∆t 0 0
0 0 1 ∆t

]
(13)

M =


1 ∆t 0 0
0 1 0 0
0 0 1 ∆t
0 0 0 1

 (14)

4. Simulations and Measurements

During this paper the AMMS is assumed a black box
that detects the harmonic source and sends an esti-
mation of the azimuth of the detected source to the
central node of the network. The main goal of the
simulations performed during this investigation is to
validate the method and also to know if the 2D lo-
calization and tracking of flying vehicles is feasible
when the altitude of the source is unknown and time-
varying.

4.1. Simulations

To model this, the simulations were performed by
using the GPS data of the track of a RC flying
aircraft. Then the time signals (pressure and particle
velocity) were generated at every sensor position
using the measurement model in Section II, taking
into account the actual 3D position, the speed and
the direction of the target and the time that the
sound takes to travel from the source position to
every sensor position.
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Figure 1. 2D tracks used to simulate the source localization
problem.

]

Figure 2. Pusher UAV used for the measurements.

The tracks used in the simulations are shown in
Fig. 1. As can be seen, both test tracks include
changes in the trajectory of the RC aircraft. In the
simulations the source is assumed harmonic. Several
harmonics are generated assuming a constant ground
frequency and applying the corresponding Doppler
shift based on the velocity and the direction of the
target. At single sensor level the Capon method is
used to estimate the DOA of the source (azimuth) [7].
The background noise is simulated by adding com-
plex circularly white Gaussian noise with constant
variance to the received signal in order to achieve a
SNR of 0 dB 100 meters away from the source for the
ground tone, and the signals are attenuated using the
quadratic law and the atmospheric attenuation [13].
Note that the SNR of every harmonic is time-varying
and it depends on the distance from the sensor to
the source. As shown in Fig. 1, four sensors are
used during the simulations. Then, the algorithms
explained in the previous section are used to get
the estimation of the position of the target in the
horizontal plane.

With the aim of estimating the error, a reference
time is needed. The time when the sound reaches the
farthest sensor is taken as a reference time to esti-
mate the error at every instant. It makes difficult to
simulate the problem because the reference sampling
rate is not constant. Since we are tracking source in
motion an estimation of the Root Mean Square Error
(RMSE) for the whole track can be a good indicator
of the average performance [10] of the algorithm, but
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Figure 3. Results of the tracking for a small part of the
first track. Red crosses - GPS 2D position of the source,
green circles - WLS, blue squares - RWLS, black stars -
direct KF

it is meaningless if the goal is to know the evolution of
the performance with the time and the position of the
source. It would be interesting to observe the evolu-
tion of the statistical properties of the error with the
time. The evolution of the error with the time was
studied by performing 100 Monte Carlo repetitions
for each track and estimating the RMSE per frame.
The Cumulative Distribution Function (CDF) of the
RMSE is then obtained by averaging also over the
time.

4.2. Measurements

As commented before, two measurements were per-
formed using two small RC aircrafts (Fig. 2) using a
synchronized network of AMMSs. The weight of both
aircrafts is less than 500 grams and the size of the
propeller is small. Because of that, the signal to noise
ratio at the sensors is extremely poor (between -40dB
and 3 dB for all the sensors all the time). Furthermore,
the pilot referred to a turbulent flight conditions, so
extremely hard propagation conditions are expected.
The same algorithms used in the simulations were ap-
plied to the measurements. Some localization results
are presented and commented in the next section.

5. Results and discussion

The results of the localization for a small part of the
first simulated track and a single MC run are shown
in Fig. 3. As can be seen, for low SNR conditions
and sources in motion both WLS and RWLS are
extremely noisy estimators of the position, as ex-
pected. However, the standard Kalman filter is able
to minimize the estimation error by modeling the
dynamics of the process and its estimation is in good
agreement with the actual path of the target. It is
easy to see that the error notably increases when the
aircraft change 180 degrees the direction relatively
fast and close to one of the sensors. Note that in this
case the differential time delays and the observation
interval of the network are not small relative to the
inverse of the speed of the target, i.e. the source is
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Figure 4. Cumulative Distribution Function of the RMSE.
green dash-dotted line - WLS, blue dashed line- RWLS,
red line - standard KF
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Figure 5. RMSE vs Time for the second track. green dash-
dotted line - WLS, blue dashed line- RWLS, red line -
standard KF

notably moving within the observation interval.

Fig. 4 shows the CDF of the RMSE averaged over
all the MC runs, over the time and over the simulated
tracks. As can be seen, the RWLS outperforms the
WLS algorithm in mean, as expected. On the other
hand, it is shown how much the estimation can be
improved by modeling the motion of the source.
The exact values are not important because they
depend on the number of sensors, the geometry of
the network, the propagation conditions and so on.
However, it is shown that for any high percentage of
the time (80%, 90%, 95%) the RMSE is considerably
reduced under the simulation conditions. In order to
know how the RMSE depends on the source position
(on the time) the RMSE is averaged over the MC
runs only. Thus an estimation of the RMSE for every
source position is obtained. The results are shown
in Fig. 5. It is worth it to mention that the error is
higher when the speed of the target increases and
it is close to one AMMS, because in this case the
observation interval of the network is close to its
maximum and it is not short enough relative to the
inverse of the speed of the target.

The results of the localization for a small part
track of one of the RC aircrafts are shown in Fig. 6.
As can be seen, for this part all the approaches are
giving as a result a reasonably good estimation of
the flight track. It is seen that the RWLS algorithm

outperforms the WLS algorithm, as expected in view
of the results of the simulations.

The results of the localization for a small pice of the
track of the other RC aircraft are presented in Fig. 7.
It is easy to see that both algorithms fail in this case
because the target is passing over one AMMS at more
than 60 km/h and the observation interval reaches its
maximum for the given network configuration (around
1 second). It causes the WLS algorithm estimation
to be dominated by the farthest sensors whose az-
imuth estimates are more noisy due the SNR. It is
seen that the RWLS algorithm notably improves the
estimation of the position, but it does not seem an
unbiased estimator of the actual 2D position of the
aircraft when it is approaching the sensor. Because of
that, the smoother is not estimating the path prop-
erly, but still it outperforms the noisy estimation of
the path given by WLS and RWLS.

5.1. Some factors that can affect the detec-
tion and the localization range

Based on the measurements using the RC small
aircrafts, a list of some of the factors that can affect
the detection and the localization range using the
algorithms tested during this investigation is pre-
sented in this section. As mentioned along the paper,
the speed of the source relative to the observation
interval of the network and the differential relative
delays, beside the geometry of the network and the
number sensors notably affect the localization range
for a given network [9].

The detection range is affected by the directivity of
the source and the attenuation of the sound travel-
ing through the atmosphere from the source position
to the sensors. In free field this attenuation is well
defined by the quadratic law [1]. It can be a good ap-
proximation under some controlled measurement con-
ditions or for relatively short ranges outdoors, but
it is not for medium or large ranges. Due the fact
that the propagation of the waves from flying air-
crafts to ground sensors is not parallel to the ground
and that the range may be large for realistic applica-
tions, better attenuation models can be used in prac-
tice, which take into account the lack of homogeneity
of the medium. The most used one is the Excess of
Attenuation Model [13] that accounts for several at-
tenuation effects. The most important factors of that
model regarding this investigation are:

• Atmospheric attenuation that depends on the fre-
quency, temperature and humidity. It is measured
in dB/(100m).

• Weather conditions as the effects of the wind, tem-
perature effects. Note that both kind of effects are
frequency dependent.
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Figure 6. 2D Localization and tracking of a real flying
aircraft. Red crosses - GPS 2D position of the source, green
circles - WLS, blue squares - RWLS, black stars - direct
KF
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Figure 7. 2D Localization and tracking of a real flying
aircraft. Red crosses - GPS 2D position of the source, green
circles - WLS, blue squares - RWLS, black stars - direct
KF

• Ground effects as reflections or absorption due the
ground propagation. Both are related to the acous-
tic reflective properties of the ground, which also
depend on the frequency.

• Atmospheric turbulence, caused by random fluctu-
ations of the wind and the temperature, that ran-
domly changes the amplitude and the phase of the
sound.

• Vegetation and foliage close to the sensors provides
a small amount of attenuation only if it is suffi-
ciently dense.
Note that all the mentioned factors are frequency

dependent. It makes difficult to predict the attenua-
tion of sources in motion because all this effects are
time varying and the frequency of the sound received
at every sensor may be different.

6. Conclusions

A 2D version of the two algorithms proposed in [9]
and described in section 3 for broadband source local-
ization using acoustic vectors sensors have been pre-
sented and tested using realistic simulations of flying
aircrafts and real measurements. It is shown that the
RWLS algorithm clearly outperforms the WLS algo-
rithm also for real measurements. A standard Kalman
filter was applied to the estimates of the RWLS algo-
rithm with the aim of modeling the motion of the

source and smoothing the 2D flight path estimation.
It has been proven that reasonably good results can
be obtained by modeling the dynamics of the prob-
lem, mainly in low SNR conditions. Since both algo-
rithms will not be able to track any kind of flying
aircrafts, further related work should be oriented to
derive and test algorithms that can track faster air-
crafts. Another important issue to be investigated is
the feasibility of a 3D localization using 2D acoustic
vector sensors.
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