
 

 

 

 

 

 

 

 

 

 

 

 Liner impedance determination from PIV
acoustic measurements

Antoni Alomar, Yves Aurégan
LAUM-CNRS, Universite du Maine, Le Mans, France.

Summary
An indirect method to determine the impedance of a locally reacting liner in absence of flow is
presented, based on Particle Image Velocimetry. An error function is defined which quantifies the
difference between the measured and computed velocity fields, and whose minimum corresponds to
the optimum impedance and incoming plane wave amplitude. It is expressed in terms of either single
phase velocity fields or the Fourier amplitude, leading to different optimum impedances. It is shown
that the impedances obtained from single phase measurements are subject to a larger error than the
ones obtained from Fourier amplitudes or from their average along a period. The error is attributed
to weak convection effects due to the background flow needed to sustain the seeding particles.

PACS no. xx.xx.Nn, xx.xx.Nn

1. Introduction

During the last decades there is an increasing in-
terest in diminishing comunity noise. In a joint ef-
fort between academia and industry, the sources of
sound involved are investigated, together with means
for their reduction and control. In many situations,
sound is generated and propagated through pipes or
ducts. In that situation, acoustic liners are designed
and commonly used to attenuate the noise levels. The
most well-known application are aircraft aero-engines,
whose inner walls are treated with liners to attenuate
the noise generated by the fan and the combustion
chamber.

A particular type of liners are the so-called locally
reacting liners, where the interaction of the acoustic
field with the lined wall is local, i.e. the impedance
boundary condition is defined locally. If the liner is
also linear (the boundary condition is independent
of the incident sound amplitude and incidence) the
boundary condition can be reduced to a single value of
the acoustic impedance, at a given frequency. This is
actually the boundary condition needed by an acous-
tic solver in absence of grazing flow. When there is
flow the boundary condition changes [1], although still
involves the liner impedance as defined above.

Several methods are used to determine the liner
impedance. In the so-called direct methods, the
impedance is calculated exclusively from microphone
measurements. The in situ method consists of fixing
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the microphones inside the liner cavities, in order to
measure directly the pressure and velocity inside the
liner [2]. It has two important drawbacks: it is in-
trusive, and it can only determine the local cavity
impedance. The well-known two-microphone method
is used in normal incidence tubes, and therefore can-
not be used with grazing flow over the liner [3, 4].

More convenient have been found to be the indirect
methods, which make use of the computed acoustic
field together with experimental data to determine
the liner impedance. The single mode method [5] uses
the simplifying assumption that a single mode is prop-
agating along the lined section, which provides an an-
alytical solution, but it’s accuracy is limited. More
recent methods use a more accurate numerical de-
scription of the acoustic field, using the finite element
method [6, 7, 8] or modal methods [9, 10, 11] as acous-
tic solvers. Most of the experimental data used in the
past consists of microphone measurements along the
duct, but also laser doppler velocimetry (LDV) has
been used [12, 13].

A measurement technique which has not been ap-
plied to liner impedance eduction despite having a po-
tential advantage is particle image velocimetry (PIV).
PIV has been successfully used in the past to measure
the acoustic particle velocity in a number of other ap-
plications within acoustics, and its capabilities and
limitations are well established [14]. The reason for
using PIV is that, as opposed to microphones and
LDV, it provides the acoustic field simultaneously on
an entire plane, from a single measurement. To obtain
the same amount of spatial information with LDV, a
huge number of successive measurements would be
needed (of the order of thousands). The information
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Figure 1. Experimental setup [15].

contained in the velocity fields may lead to a sharper
and less error sensitive impedance eduction.

2. Experimental setup

The rig used consists of a rectangular duct with cross
section dimensions of 8 cm (width) × 2 cm (height).
The test section is 0.6 m long, and has an anechoic
termination. The lined wall is located at the centre
of the test section. It spans the entire channel width
and has a length of 8 cm. The test section has two
rectangular windows, one on the opposite wall to the
liner and another at a side wall. The former lets the
laser sheet pass through, illuminating the entire lined
section, and the latter allows the light reflected to
reach the camera. In order to use PIV, a uniform dis-
tribution of seeding particles are required to fill the
channel. For the present case of no mean flow this
is difficult to achieve, and a small amount of ventila-
tion was needed. A small fan was fixed at the duct
inlet which generated a low flow velocity and allowed
a proper distribution of particles. The velocity at the
centreline was 0.5 m/s, corresponding to a Reynolds
number of 640. The incoming sound is generated by
a loudspeaker fixed immediately downstream of the
channel inlet. The sound level was close to the max-
imum allowed by the amplifier, in order to maximise
the signal-to-noise ratio. The same rig was used by
Marx et al. [15], and it is sketched in Figure 1.

The liner is of honeycomb-type, with high porosity
and low resistivity. It consists of a set of metallic,
hexagonal, rigidly terminated cavities with a depth of
5 cm and diameter of 2 mm. The resonance frequency
of the liner is 1700 Hz. An impedance model based on
a time domain formulation [16] has been considered
for comparison:

Z

ρoco
= − i

φ
cot(

Dω

ce
− iε

2
), (1)

where φ = 0.9 is the porosity, D = 5 cm is the liner
depth, ρo is the ambient air density, co is the ambient
sound speed, and ce and ε are model parameters.

An upstream and a downstream pair of micro-
phones flush to the wall were used to measure the
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Figure 2. Measured transmission coefficient and computed
from equation 1.

upstream and downstream plane wave amplitudes and
the scattering matrix. The distance between the mi-
crophones in each pair is 8.5 cm. The upstream mi-
crophone of the upstream pair is located at x = −17
cm, and the upstream microphone of the downstream
pair at x = 17 cm (axis origin is on the liner upstream
edge).

The impedance model parameters, including the
porosity, were determined by a best-fit of the mea-
sured transmission and reflection coefficients in the
frequency range of interest (see Figure 2). The ob-
tained parameter values are φ = 0.91, ce = 331 and
ε = 0.17. In the vicinity of the resonant frequency sig-
nificant nonlinear effects were detected in the down-
stream microphone signals.

A Dantec PIV system has been used. It consists
of a Litron laser pulse generator of 532 nm, synchro-
nised with a high-speed FlowSenseEO 29M camera,
of 6600×4400 pixels. The time between images was
200 µs, and the time between image pairs 0.5 s. An
adaptive correlation algorithm provided by the Dan-
tec software was used, which increased the image pairs
cross-correlation, reaching a window size of 32×32
pixels. To increase the resolution, an overlap of 50%
was used.

The PIV plane is shown in Figure 3. To eliminate
errors from merging adjacent vector fields, the en-
tire lined section was captured from a single snap-
shot. This caused the aspect ratio of the PIV plane
to be large, and the number of pixels along the chan-
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Figure 3. PIV plane.

nel height was limited to 610. Finally, the PIV plane
contained 233 (streamwise)×32 (wall-normal) vectors.
Each velocity vector field was obtained by averaging
at least 100 instantaneous velocity fields.

3. Velocity fields

The incoming sound are single-frequency plane waves.
In this case, the Fourier amplitude is completely de-
termined from two instantaneous velocity fields (if the
phase difference between them is known). However,
the obtained fields suffer from discontinuities induced
by the inverse tangent function. This is avoided by
using the conventional definition of the Fourier series
for arbitrary periodic functions, although more single
measurements are needed. Keeping only the funda-
mental component of the Fourier series, any acoustic
magnitude can be expressed as:

q(x, y, t) = Re(Q(x, y)eiωt), (2)

Q(x, y) =
2

T

∫ T

0

q(x, y, t)e−iωtdt, (3)

where q is any acoustic magnitude and Q is the funda-
mental complex Fourier coefficient, or Fourier ampli-
tude. The velocity vector fields were measured at spec-
ified instants, determined by the delay with respect to
the loudspeaker reference signal. At the frequencies 1
kHz and 1.7 kHz, eight vector fields were acquired, at
uniformly distributed phases within a period. From
these the Fourier amplitude can be computed from
equation 3. At the rest of frequencies, only one veloc-
ity field was measured. Measurements without incom-
ing sound were also performed. The experiments were
performed during two independent testing campaigns,
separated several months. Table I shows a summary
of the measurements performed.

The mean velocity profiles measured with incoming
sound (phase average along a period) and without in-
coming sound upstream of the liner are shown in Fig-
ure 4. They are close to each other and both fit well
the Poiseuille profile.

Figure 5 shows an example of streamwise and wall-
normal velocity contours (mean field subtracted) cor-
responding to the phase 0◦ at 1 kHz. An example of
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Figure 4. Mean velocity profile measured at x = −10 mm,
together with the Poiseuille profile.
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Figure 5. Instantaneous streamwise and wall-normal ve-
locity contours corresponding to the phase 0◦ and 1 kHz.

the signal measured at a point in time is shown in Fig-
ure 6. The fundamental Fourier component matches
closely the measured signal. This is observed in all
cases except for the streamwise velocity component at
the resonance frequency, where it starts behaving non-
harmonically at the fall-off region. At x = 20−30 mm
the disagreement with the fundamental Fourier com-
ponent is significant, as can be appreciated in Figure
7(a). However, the wall-normal component remains
harmonic further downstream (Figure 7(b)). This fact
points to unsteady convective flow more than acoustic
nonlinear effects as the cause. It should be decreased
by diminishing the mean convective velocity imposed
by the small fan. But this is problematic because lower
mean flow velocities prevent the seeding particles to
be homogeneously distributed in the channel, espe-
cially close to the walls. The mean flow velocity used
is actually close to the minimum that allows a uniform
particle distribution, and no further decrease seems
possible. If such unsteady flow is uncoupled of the
acoustic field, but it has long characteristic times, it
could be eliminated simply by increasing the acquisi-
tion time so that the slow unsteady currents are aver-
aged out. Several measurements were performed with
acquisition times of the order of five times the regu-
lar, and no clear improvement was detected. Further
increasing of the acquisition time was discarded for
practical reasons.
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Table I. Velocity fields measured, labeled by the phase delay with respect to loudspeaker signal (a full period are 360◦).

frequency (Hz) Phases in campaign 1 (◦) Phases in campaign 2 (◦)

750 - 0
1000 0, 45, 90, 135, 180, 225, 270, 315 0, 45, 90, 135, 180, 225, 270, 315

1250 - 0

1500 - 45

1700 0, 45, 90, 135, 180, 225, 270, 315 0, 45, 90, 135, 180, 225, 270, 315
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Figure 6. Streamwise velocity component measured at
(x, y) = (60, 4) mm, together with the fundamental
Fourier component (line), the phase average (dashed) and
no sound component (dotted).
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Figure 7. (a) Streamwise and (b) wall-normal velocity
measured at x = 20 (black), 30 (blue) and 40 (red) mm,
and y = 4 mm, for 1.7 kHz.

4. Error function and minimum
search method

The liner impedance is determined by minimising
an error function which quantifies the difference be-
tween the computed and measured velocity fields. The
computed fields are obtained from a two-dimensional
acoustic solver, based on a mixed multimodal-finite
difference scheme. The three-zones method [9] is used
to couple the hard and lined wall regions. The solver
inputs are the liner impedance, Z, and the incoming
plane wave amplitudes, P+

1 , P−
2 . It has been checked

that the anechoic termination induces a small modu-
lus of P−

2 in the frequency range of interest, and the

effect of neglecting P−
2 on the optimum impedances is

small. This fact, together with the significant increase
in computation time when P−

2 is accounted for, has
motivated the assumption P−

2 = 0 (perfectly anechoic
termination).

In terms of the Fourier amplitudes, the following
error function is considered:

Ψ =

√∫∫
A
|Um(x, y)− Uc(x, y)|2dxdy∫∫

A
|Um(x, y)|2dxdy

+

√∫∫
A
|Vm(x, y)− Vc(x, y)|2dxdy∫∫

A
|Vm(x, y)|2dxdy

, (4)

where A is the PIV measurement area, and the sub-
scripts ‘m’ and ‘c’ indicate that the quantity is mea-
sured or computed, respectively. It is remarked that
this is one particular choice of error function. It could
have been defined in terms of the velocity vector norm.
The reason for treating separately U and V is that U
is generally much bigger than V , and the resulting op-
timum values are close to the optimum values for U .
In that case the misprediction of V is largely ignored.
With the chosen function we give equal weight to both
velocity components. The integrals are discretised us-
ing the grid from the PIV vector fields. In order to ac-
celerate the computation time, the grid used is coarser
than the PIV grid, containing 80 (streamwise)×13
(wall-normal) points.

When the single phase fields are used instead of
the Fourier amplitude, Um(x, y) is replaced by the
velocity field at the phase p considered, um(x, y, tp),
and Uc(x, y) is replaced by the real component of the
Fourier amplitude, Re(Uc(x, y)).

To find the minimum of the error function, a simple
iterative procedure has been adopted, which consists
of a moving grid of the independent variables, with de-
creasing size. The minimum of each grid is used as the
centre of the following grid, and when the grid centre
is repeated, the grid size is decreased. This procedure
is repeated until a convergence criteria is fulfilled. The
number of grid points per variable has been limited to
five. More grid points start to increase the computa-
tion time. Several cases have been checked against the
gradient descent algorithm, obtaining the same result.
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5. Results

The real and imaginary components of the educed
impedances at 1 kHz and 1.7 kHz are shown in Fig-
ures 8(a-b) and Figures 8(c-d), respectively. In addi-
tion to the values educed from the single phases (solid)
and from the Fourier amplitudes (dashed), the phase
average of the former are shown (dotted). Significant
variability exists between the values obtained from the
single phase measurements in all cases, as well as be-
tween the two testing campaigns. No clear correlation
of the educed impedances with the phase is appreci-
ated. When looking to the values obtained from the
Fourier amplitudes and the phase average, the vari-
ability is lower between the different campaigns.

The variability is somewhat higher at 1.7 kHz.
At this frequency the acoustic velocity diminishes to
values close to zero at about half the liner length,
while on the upstream liner half, the velocity sig-
nal is approximately in phase, and it goes to zero
everywhere simultaneously. In this phase range the
signal-to-noise ratio increases, and also the error in
the educed impedance. Furthermore, at this frequency
non-harmonic behaviour was detected in the stream-
wise velocity field, as discussed in Section 3. It is
therefore important, if the impedance needs to be de-
termined from a single phase, that it doesn’t corre-
spond to weak velocities.

Figure 9 shows the optimum impedances as a func-
tion of frequency. The impedances at 1 kHz and 1.7
kHz are the ones obtained from the Fourier ampli-
tude. Good agreement with the impedance model
is observed, with the exception of the resistance at
low frequencies. This can be partly due to error in
the impedance model parameters, as nonlinear effects
were important around the resonance frequency.

Figure 10 shows the error function contours at 1.7
kHz based on (a) Fourier amplitude, (b) single phase
0◦ and (c) single phase 45◦. The incoming plane wave
amplitude is fixed to the optimum. It is appreciated
that, not only the optimum impedance, but also the
shape of the basin containing the minimum is different
in the three cases. While in (a) the minimum is the
centre of an approximately symmetric basin, in (b)
and (c) the basins are deformed in certain directions.
The shape of the error function depends on the ex-
perimental error, but also on the particular choice of
error function. In absence of experimental error, dif-
ferent error functions can have different basin shapes,
but must have the same minimum location. Different
error functions can have associated minimum loca-
tions more or less sensitive to the measurement error.
This includes changing the region of integration on
the PIV plane, or how the different velocity compo-
nents are treated. In other words, the choice of error
function and integration region can be also optimised
to minimise the error of the educed impedance. This
is left as future work.
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Figure 8. Liner impedances at (a,b) 1 kHz and (c,d) 1.7
kHz (solid: from single phases, dashed: from Fourier ampli-
tude, hexagons: from impedance model, circles: first test-
ing campaign, squares: second testing campaign).
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Figure 9. Real and imaginary components of the optimum
(solid) and model (dotted) liner resistances (squares) and
reactances (circles).

6. CONCLUSIONS

The method presented has been shown to determine
the impedance of a locally reacting liner with reason-
able accuracy, for frequencies up to resonance. The
error is greater when the impedance is educed from
single phase velocity fields, and it is lower when us-
ing the Fourier amplitude, or simply an average of the
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Figure 10. Contour levels of the error function at 1.7 kHz based on (a) the Fourier amplitude, (b) the single phase 0◦,
and (c) the single phase 45◦, with the incoming plane wave amplitude fixed to the optimum.

impedances educed from single phases. The random
component of the results suggests that the accuracy
will increase when increasing the number of phases
per period.

This experimental, random error has been tenta-
tively attributed to unsteady, streamwise convective
currents, which might be coupled with the acoustic
field. They are caused by the background convective
flow needed to sustain the seeding particles uniformly
distributed. They are therefore difficult to eliminate
in the present configuration. The error is somewhat
higher around the resonance frequency. A reason for
this is that, at the resonance, the velocity becomes low
everywhere simultaneously in certain phase ranges, di-
minishing the signal-to-noise ratio.

The use of optimum error functions, i.e. ones that
minimise the sensitivity of the educed impedance on
the experimental error, can certainly lead to more ac-
curate liner impedances.
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