Multimodal method for flow-induced acoustic resonance in successive deep axisymmetric cavities in a duct

Xiwen Dai and Yves Aurégan
Laboratoire d’Acoustique de l’Université du Maine, Avenue Olivier Messiaen 72085, Le Mans, Cedex 9, France

Summary
Flow-induced pulsations in axisymmetric cavities with an incident sound wave are investigated. The underlying physics of the problem, which is the interaction between the shear layer instabilities and acoustic waves, is study by means of multimodal analysis. The configuration is considered as a series of duct segments with different radius. For a sheared mean flow, the radial modes of different duct segments are solved. Matching the modes at the interfaces between the segments gives the acoustic scattering matrix and the acoustic fields of the cavities-duct system for plan wave incidence. It is found that the sound amplification rate is determined by the intensity of the unstable hydrodynamic mode. Multi-cavity system tends to give more significant sound amplification than a single cavity.

PACS no. 43.28.Ra, 43.20.Mv

1. Introduction

There may be a strong interaction between flow and acoustic when a free shear layer is formed. This is the case for instance in the T-junctions, in corrugated pipes [1], … On the other hand, it has been demonstrated that instabilities can also occur in lined ducts treated by locally reacting liners [2] or by porous materials [3]. The purpose of this work is to go from discrete systems, e.g. corrugated tubes, to continuous systems where the wall behavior is described by continuous impedance. This paper is a first step in this direction. It validates the used tools i.e. a multimodal method in shear flow.

The acoustical behavior of axisymmetric cavities in a flow duct is studied. Between the cavity and the duct a shear layer is formed. In most cases this shear layer is unstable. Hydrodynamic perturbations created at the upstream edge of the cavity are convected by the flow while being amplified. When the amplification rate is sufficiently high, the shear layer is rolled into discrete vortices. This nonlinear saturation mechanism is not considered in this work that is concentrated on the linear behavior of the system. Thus only the energy exchanges between the flow and the acoustic are of interest and the flow-induced pulsations that result from a coupling of a linear amplification with a resonance are not considered here. The energy that a flow can give to the acoustic is maximum when the Strouhal number based on the sound frequency, the length of the cavity and the convection velocity \(U_T \) of the unstable hydrodynamic mode is of the order of 1: \(S_T = f_L / U_T \approx 1 \). The flow can also provide energy to the acoustic when the length of the cavity is an entire number of hydrodynamic wavelengths i.e. \(S_T \approx 1, 2, 3 \cdots \). When this condition of entire Strouhal number is verified near a resonance frequency of the cavity a very high amplification is obtained [4]. Those high amplifications can be unrealistic in our modeling because of the nonlinear phenomena that can occur in this case.

The numerical model used in this paper is the MultiModal Method solving the Linearized Euler Equations [5]. The shear flow modes (acoustic and hydrodynamic) are computed in the duct and in the cavity segments. Matching the modes at the interfaces between the segments gives the acoustic scattering matrix and the acoustic fields of the cavities-duct system for any incident wave. This shows the coupling of the shear layer and the acoustic waves.
2. Multimodal method

The axisymmetric cavities-duct is sketched in figure 1(a). Such configuration can be considered as a series of identical cells, as shown in figure 1(b), each of which is split into three segments: duct 1-3 with radius \(R_1, R_2, \) and \(R_1 \) respectively. A parallel non-uniform mean flow is present in the ducts. The mean flow profile is assumed to be unaltered at the interfaces between adjacent segments. Thus, the mean flow profile is the same everywhere when the radius is smaller than \(R_1 \) and the mean flow is supposed to be 0 in the cavity.

![Diagram](image)

Figure 1. (a) Successive axisymmetric cavities in a duct, (b) duct-cavity-duct cell.

2.1. Finding the modes

Linearization of the Euler equations for conservation of momentum and mass gives:

\[\rho_0 \left(\frac{\partial}{\partial t} + U \frac{\partial}{\partial z} \right) u' + \rho_0 b \frac{dU}{dr} v' = - \frac{\partial p'}{\partial z}, \]

(1)

\[\rho_0 \left(\frac{\partial}{\partial t} + U \frac{\partial}{\partial z} \right) v' = - \frac{\partial p'}{\partial r}, \]

(2)

\[\frac{1}{\rho_0 c_0^2} \left(\frac{\partial}{\partial t} + U \frac{\partial}{\partial z} \right) p' = \frac{\partial}{\partial z} \left(\frac{\partial u'}{\partial z} + \frac{\partial v'}{\partial r} + \frac{v'}{r} \right), \]

(3)

where \(\rho_0 \) is the mean density, \(c_0 \) is speed of sound, and \(U \) is the mean flow velocity. \(u' \) and \(v' \) are the linear velocity disturbance in respectively the \(z \)- and \(r \)-direction, and \(p' \) is the linear pressure disturbance. Applying \(\rho_0 \left(\frac{\partial}{\partial t} + U \frac{\partial}{\partial z} \right) \) to (3) and subtracting \(\frac{\partial p'}{\partial z} \) to (1) and \(\frac{\partial p'}{\partial r} \) to (2) gives:

\[\frac{1}{\rho_0 c_0^2} \left(\frac{\partial}{\partial t} + U \frac{\partial}{\partial z} \right)^2 p' - \left(\frac{\partial^2 p'}{\partial z^2} + \frac{\partial^2 p'}{\partial r^2} + \frac{1}{r} \frac{\partial p'}{\partial r} \right) = 2 \rho_0 \frac{dU}{dr} \frac{\partial v'}{\partial z}, \]

(4)

The quantities are put in dimensionless form by:

\[p_r = \frac{1}{\rho_0 c_0^2} p', \quad (z, r) = \left(\frac{z}{R_1}, \frac{r}{R_1} \right), \]

\[(u, v) = \frac{1}{c_0} (u', v'), \quad \omega = \frac{\omega c_0}{R_1}, \]

(5)

\[M(r) = M_0 f(r) = \frac{1}{c_0} U(r), \quad t = \frac{c_0 t}{R_1}, \]

where \(\omega \) is the frequency, and \(M \) is the Mach number. The function \(f(r) \) prescribes the mean flow profile. \(M_0 \) is the average Mach number in the duct. The dimensionless form of equations (2) and (5) is:

\[\left(\frac{\partial}{\partial t} + M_0 f \frac{\partial}{\partial z} \right) v = - \frac{\partial p_r}{\partial r}, \]

(6)

\[\left(\frac{\partial}{\partial t} + M_0 f \frac{\partial}{\partial z} \right) p_r = 2 M_0 \frac{df}{dr} \frac{\partial v}{\partial z}. \]

(7)

With the following assumption of harmonic waves in the \(z \)-direction:

\[p_r = P(r) \exp(-i k z) \exp(i \omega t), \]

\[v = V(r) \exp(-i k z) \exp(i \omega t), \]

\[q_r = Q(r) \exp(-i k z) \exp(i \omega t), \]

where \(i^2 = -1 \), \(q_r = i \hat{c}_p / \hat{c}_z \), and \(k \) is the dimensionless wavenumber, equations (6) and (7) gives:

\[i \left(\omega - M_0 f k \right) V = \frac{-dP}{dr}, \]

(9)

\[\left(1 - M_0^2 f^2 \right) k^2 P + 2 \omega M_0 f k P - \omega^2 P \]

\[\frac{-d^2 P}{dr^2} - \frac{1}{r} \frac{dP}{dr} = -2i M_0 \frac{df}{dr} k V. \]

(10)

The equations (9) and (10) are discretized in the \(r \)-direction by taking \(N_1 \) equally spaced points in duct 1 and 3, and \(N_2 \) equally spaced points in duct 2. The spacing between interior points in all ducts is \(\Delta r = R_1 / N_1 = R_2 / N_2 \), and the first and last points are taken \(\Delta r / 2 \) from the axial line and the duct wall. The finite difference method is used to solve the problem. The following generalized eigenvalue problem is found:

\[\begin{bmatrix} 1 - M_0^2 f^2 & 2i M_0 f & 0 \\ 0 & i M_0 f & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} Q \\ V \\ P \end{bmatrix} = k \begin{bmatrix} Q \\ V \\ P \end{bmatrix}, \]

(11)
\(\begin{bmatrix} 0 & -Q_1 & Q_2^* & Q_3^*E_c^* \\ 0 & 0 & 0 & 0 \\ 0 & -V_1 & V_2^* & V_3^*E_c^* \\ 0 & 0 & 0 & 0 \\ -Q_1^* & 0 & Q_2^*E_c^* & Q_3^* \\ 0 & 0 & 0 & 0 \\ -V_1^* & 0 & V_2^*E_c^* & V_3^* \\ -P_1^* & 0 & P_2^*E_c^* & P_3^* \\ \end{bmatrix} \) \(\begin{bmatrix} C_1^* \\ C_2^* \\ C_3^* \\ C_4^* \end{bmatrix} = \begin{bmatrix} Q_1E_c^* \\ 0 \\ 0 \\ 0 \end{bmatrix} \) (13)

Equation (13) gives the scattering matrix:
\(S = S_1^1S_3^1 \), which relates all the waves propagating away from the cavity in the duct to the waves propagating towards the cavity:

\[
\begin{pmatrix} C_3^* \\ C_1^* \\ C_2^* \end{pmatrix} = S \begin{pmatrix} C_1^* \\ C_2^* \end{pmatrix} \tag{14}
\]

For plane wave, the transmission and reflection coefficients of the cavity can be defined in either direction,

\[
T^+ = C_3^*(1) / C_1^*(1) = S(1,1),
\]

\[
R^+ = C_2^*(1) / C_1^*(1) = S(2N_1 + 1,1),
\]

\[
T^- = C_1^*(1) / C_3^*(1) = S(2N_1 + 1,2N_1 + 1),
\]

\[
R^- = C_2^*(1) / C_3^*(1) = S(1,2N_1 + 1).
\] (15)

3. Results

3.1. Interaction between hydrodynamic instabilities and acoustic waves

A hyperbolic-tangent profile is used,

\[
f_0(r) = 1 - \left(1 + m \exp \left(m \phi(m) \frac{r_{inf} - r}{\theta} \right) \right)^{\frac{1}{m}},
\] (16)

\[
\phi(m) = \int_0^1 \frac{1 - z}{1 - z^m} dz,
\]

where \(m \) is the profile parameter, \(\theta \) is the momentum thickness of the shear layer, the inflexion point is set at \(r_{inf} \). To ensure that the mean flow velocity is zero at the wall of duct 1, and the section-averaged value of the profile function equals unity, the following treatment of the profile function is needed,

\[
f(r) = \begin{cases} \frac{f_0(r) - f_0(r_i)}{\int_0^r \left[f_0(r) - f_0(r_i) \right] r \mathrm{d}r}, & 0 \leq r \leq r_i, \\
0, & r_i < r \leq r_2. \end{cases}
\] (17)

In this subsection, the profile parameters are set as: \(m = 1, r_{inf} = 1, \theta = 0.1 \).
Figure 2. Non-dimensional wave numbers of the modes in: a) duct 1 and 3, b) duct 2 (cavity segment).

Figure 3. Linear velocity disturbance v_r^* field.

Figure 2 shows the dimensionless wave numbers of the modes in duct 1 (and 3) and duct 2 (cavity segment) for $R_1=15\text{mm}$, $R_2=50\text{mm}$, $L_C=7\text{mm}$, $L_T=0.5\text{mm}$, $M_0=0.1$, $f=1000\text{ Hz}$, and $N_1=90$. In duct 1 the propagating and evanescent acoustic modes in the $+z$ and $-z$ directions, the neutral hydrodynamic modes propagating in the $+z$ direction are found. In the cavity segment, two hydrodynamic modes are found with non-zero imaginary part such that the mode grows and decays exponentially in the propagation direction. The one with positive imaginary part is the unstable hydrodynamic mode corresponding to the “Kelvin-Helmholtz” type instability of the shear layer. The radial velocity v_r^* is shown in figure 3, the unstable hydrodynamic wave in the shear layer can be seen.

Figure 4. Magnitude of transmission coefficient of one cavity as a function of Strouhal number, (a) $R_1=15\text{mm}$, $R_2=50\text{mm}$, $L_C=7\text{mm}$, (b) $R_1=15\text{mm}$, $R_2=50\text{mm}$, $L_C=10\text{mm}$.

In figure 4, the magnitudes of T^* for plane wave are plot against the Strouhal number based on the mean velocity $S_t = f L_C / U_0$ for different Mach number. It is found that the peak frequencies of amplification for each M_0 happen at nearly the same Strouhal number. However, the Strouhal number for the peak amplification varies as the length of the cavity is increased. The corresponding imagery parts of the wavenumbers are shown in figure 5. Im(k_{hu^*}) is the growth rate of the disturbance. We can find that the growth rates for the peaks in figure 4, as marked in figure 5, are not the maximum.

Figure 5. Imaginary part of the wave number of the unstable hydrodynamic mode of the shear layer.
In figure 6, the magnitude of T^+, accompanied with the magnitude of the fluctuating average velocity (along the length of the cavity opening) due to the unstable hydrodynamic mode, are plotted against frequency. It is shown that the peak frequencies for T^+ and $|v_{av,hu}|$ coincide. It indicates that the peak sound amplification occurs when the magnitude of the fluctuating flow flux through the cavity opening caused by the shear layer instabilities reaches its maximum.

We isolated the velocity disturbance due to unstable hydrodynamic mode from equation (12), $v_{hu}(z,t) = C_{hu}V_{hu} \exp(-ik_{hu}z) \exp(i\omega t)$. (18)

The effects determining $|v_{av,hu}|$ can be classified into: $V_{hu} \exp(-ik_{hu}z)$, which is related to the growth rate and convection velocity of the vortical disturbance; C_{hu}, which is the result of the coupling of the hydrodynamic modes and the acoustic waves. In figure 7, $|v_{av,hu}|$ for $|C_{hu}|=1$ (denoted as $v_{av,hu}(C_1)$, growth rate $\text{Im}(k_{hu})$, and magnitude of transmission coefficient $|T^+|$ as a function of incident frequency.

3.2. Successive axisymmetric cavities

For one cavity equation (14) gives,\[
\begin{pmatrix} C_1 \\ C_3 \end{pmatrix} = S^{(1)} \begin{pmatrix} C_1^+ \\ C_3^+ \end{pmatrix}
\] (19)

then the scattering matrix for two cavities can be given by the following relations:
\[
S^{(1+2)} = \begin{bmatrix} S_{11}^{(1)}S_{11}^{(2)} + S_{12}^{(1)}S_{12}^{(2)} & S_{12}^{(1)}S_{21}^{(2)} & S_{12}^{(1)}S_{12}^{(2)}FS_{22}^{(2)} \\ S_{21}^{(1)}S_{12}^{(2)} & S_{21}^{(1)}S_{21}^{(2)} & S_{21}^{(1)}FS_{22}^{(2)} \\ S_{22}^{(1)}S_{12}^{(2)} & S_{22}^{(1)}S_{22}^{(2)} & S_{22}^{(1)}FS_{22}^{(2)} \end{bmatrix}
\] (20)

The above iterative scattering matrix algorithm [6] is employed to obtain the scattering matrix of a series of the cavities. The magnitude of the transmission coefficient for 1 cavity and 10 cavities are shown in figure 8. The geometrical parameters are $R_1=15\text{mm}$, $R_2=19\text{mm}$, $L_C=4\text{mm}$, $L_T=8\text{mm}$. The mean flow profile is given by equations (16) and (17) for $m=1$, $r_{\text{inf}}=1$, $\theta=0.05$. It is found that the cavities show both sound absorption and sound amplification properties as the Strouhal number increases. The peak amplification occurs at the same Strouhal number. Due to the accumulative effect, the 10-
4. Conclusions

A theoretical linear model based on the multimodal method is established to study the sound amplification problem caused by the vortical-acoustic wave interaction. The present model is able to take the boundary layer effects into account. It is found that due to the interaction between the incident sound wave, the shear layer, and the cavity, an intense unstable hydrodynamic mode can be produced, and the incident sound wave is significantly amplified. Due to the accumulative effects, multi-cavity system tends to give more significant sound amplification than a single cavity.

Acknowledgement

This work has been funded by Le Mans Acoustique project and the ITN project FlowAirS (European Grant No. FP7-PEOPLE-2011-ITN-289352).

References

