
 

 

 

 

 

 

 

 

 

 

 

 

 

SEA based prediction for integrated vibro-
acoustical design optimization of multi-storey 
buildings 
 
Andreas Rabold, Markus Schramm, Camille Châteauvieux-Hellwig

 

University of Applied Sciences Rosenheim, Hochschulstraße 1, Rosenheim, Germany 

and ift Rosenheim GmbH, Theodor-Gietl-Str.7-9, Rosenheim, Germany 

Summary 

In order to enable the design of a multi-storey timber building with respect to the requirements or 

recommendations for an enhanced acoustic comfort, a collaboration of various experts is required 

during the design process creating their own individual building models. A simplification of the 

design process and the procedure of verification could be achieved if all of the experts involved 

work on one single CAD based Building Information Model (BIM). The required design tools 

(FEM and SEA for the acoustic computation) can be directly coupled to the BIM. For this 

purpose, it is necessary to allocate much more validated input data for timber building elements.  

PACS no. 43.40.At, 43.55.Rg 

 

1. Introduction
1
 

Timber buildings have been pioneering building 

constructions in terms of energy conservation and 

resource efficiency. The number of multi-storey 

residential buildings erected in timber construction 

has risen steadily in the last few years, also in 

urban areas and centres.  

Compared to similar construction projects built in 

concrete the design of a multi-storey building in 

timber construction is more demanding and 

challenging to the architect and construction 

engineer. Reasons for this are more stringent 

requirements on fire safety regulations in these 

buildings as well as the absence of sufficient 

realized examples and design tools for the proof of 

performance of vibration control and sound 

insulation. In a current project [1] these design 

tools shall be further developed by using a 

combination of FEM and SEA for the proof of 

performance based on the BIM.  

The contribution presents first an overview of the 

used computation models used. Then the SEA 

based method according to EN 12354 [2] and the 

needed input data are focused. Therefore coupling 

loss factors of several junctions built with massive 

wood elements were measured and design values 

for the vibration reduction index sampled. The 

influence of the structural reverberation time to 

the accuracy of the propagation was proofed and 

different single value methods were compared. 

                                                      

 

 

2. Overview of computation
2
 

A preliminary flow chart of the design process and 

the verification of the building properties from the 

first draft to the construction documentation are 

depicted in Figure 1. The overview shows an 

integrated computation of the required building 

properties within the planning process of the 

building design. The building information model 

is directly used for generating computational 

models for the different computations.  

The FEM model provides the basis for the 

computation of the vibrations and acoustics. The 

vibration control needs the first eigenfrequencies 

of the building. The acoustic performance of the 

building can be described by the sound reduction 

of separating elements including the transmission 

along all flanking elements. The FEM based 

acoustic model is restricted to the low frequency 

range (0 – 250 Hz). For the computation in the 

mid and high frequency range, SEA based models, 

carried out in accordance with EN 12354, are well 

suited. For these prediction models, a specific 

BIM is needed which includes not only the 

geometric information but also material data and 

measured acoustic data for the flanking elements 

and the junctions. The boxes for the material data 

and the element properties in Figure 1 represent all 

the necessary input data for the computational 

models, which have to be sampled or measured in 

the experimental part of the project. 
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Figure 2. Directional dependence of the velocity level differences at different mass ratios between the 

excited and radiating element. Left: m
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4. Validation of the input data
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