
 

 

 

 

 

 

 

 

 

 

 

 Inverse method to characterize "local" and
"non-local" absorbing materials submitted to a
shear grazing flow

Oleguer Berengue Llonch, Frank Simon, Estelle Piot
ONERA Centre de TOULOUSE, DMAE, France

Summary
As aircraft traffic is constantly increasing, serious efforts are made to find ways to reduce noise
produced by the engines. Among them, the design of performing absorbing materials, called liners,
placed on the nacelle’s walls.ONERA has developed an "impedance" eduction method (code "Elvin")
applied to materials with "local reaction" in the presence of shear grazing flow. The inverse process
is based on wall acoustic pressure or velocity fields acquired by Laser Doppler Velocimetry (LDV)
above the liner. Computations rely on the resolution of the 2D linearized Euler equations in the
harmonic domain, spatially discretized by a discontinuous Galerkin scheme, which presents advan-
tageous properties. First, it is weakly dispersive and dissipative. In addition, boundary conditions
are imposed through fluxes, which is particularly robust and straightforward. The minimization of
the objective function is achieved by the resolution, at each iteration on the liner impedance, of the
direct and adjoint equations. After a description of the architecture and current features of Elvin
code, configurations of "linear" and "non-linear" liners are tested with the corresponding impedance
eduction method from data measured in Onera aeroacoustic bench (B2A) or NASA flow ducts. Values
of objective function are analysed in the impedance map to evaluate standard deviation associated
to identified impedance. Then, the procedure to extend the code to open-cell porous media instead
of "local reaction" liners is shown. This implies the integration of a computation domain in which
acoustic propagation equations are solved in the media. The objective is to extract the macroscopic
parameters governing viscous dissipation of sound waves in porous media, from Biot theory or derived
theories : open porosity, static flow resistivity, geometrical tortuosity, thermal and viscous charac-
teristic dimensions... A first validation of direct equations is finally presented in impedance tube
configuration (without flow) with implementation of Delany-Bazley’s approach.

PACS no. 43.25.+y,43.50.+y

1. Introduction

Passive acoustic liners are classically arranged in en-
gine nacelles to reduce the main contribution of ex-
ternal aircraft noise, ie the fan noise, in particu-
lar during the landing or take-off phase. These lin-
ers are generally porous "sandwich" resonators with
a perforated plate linked to an honeycomb material
above the rigid bottom. Their "local reaction" behav-
ior can be described at first glance with the prin-
ciple of an Helmholtz resonator. Nevertheless, the
design of these kind of material must take into ac-
count the fact that the treatments are submitted to
grazing turbulent high-speed flow (up to Mach 0.7)
and high-pressure levels (140 to 160 dB). So, acous-
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tic "vortices" of particle velocity can occur at the
resonator surface generating a nonlinear dissipation
mechanism (vortex shedding) and modifying the spe-
cific impedance. To reduce this effect, other solutions
are studied like the using of "wire mesh" instead of
perforated plate. Moreover, in order to enlarge the fre-
quency range of absorption, different types of SDOF
liners can be piled up to constitute 2DOF liners. How-
ever, their acoustic absorption ability is naturally lim-
ited to medium and high frequencies. To drastically
improve their capabilities to the lowest frequencies (as
needed for future Ultra High Bypass Ratio engines),
the using of "non-local reaction" architectures (with
foams, double-porosity elastic materials...) are of in-
terest even if industrial application is yet tricky (ie.
problems of fouling, robustness).

ONERA has developed an "impedance" eduction
method (code "Elvin") applied to liner with "local
reaction" in the presence of a grazing flow. The in-
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verse process is based on wall acoustic pressure or
velocity fields acquired by Laser Doppler Velocimetry
(LDV) above the liner.The approach of identifying the
impedance using data obtained by LDV has the ad-
vantage not to be intrusive and offers a larger amount
of data than with an array of microphones.

Numerical simulations are made using a Discontin-
uous Galerkin (DG) method, see [4], well suited to
solving direct and adjoint problems. applied to har-
monic Linearized Euler equations.

This article will first describe the equations and the
used numerical method (DG). The results will be pre-
sented with a confidence interval to bring up the limits
and robustness of the method,through LDV measure-
ments made by Onera and pressure data measured by
NASA [5] and [6]).

Finally, an introduction to the extension of the code
will be presented to open-cell porous media, in par-
ticular with a direct simulation of the acoustic prop-
agation in both air and porous media.

2. Numerical method

2.1. Discontinuous Galerkin Formulation

The CAA solver relies on the computation of the 2-D
harmonic Linearized Euler equations (LEEs) written
with a time dependence ejωt:

jωϕ+ Ai∂iϕ+ Bϕ = g (1)

with

A1 =

U0 0 c0
0 U0 0
c0 0 U0

 , A2 =

 V0 0 0
0 V0 c0
0 c0 V0


andB =

 ∂xU0 ∂yU0 −∂xc0
∂xV0 ∂yV0 −∂yc0
c0
ρ0
∂xρ0

c0
ρ0
∂yρ0 (γ − 1) (∂xU0 + ∂yV0)


Where g is the source term and ω = 2πf the an-

gular frequency. The vector ϕ = {u, v, c0ρ/ρ0}t repre-
sents the acoustic disturbances around the mean ve-
locity (in 2 D U0 and V0); c0 and ρ0 are respectively
the speed of sound and the density of the mean flow,
and c0 ρ

ρ0
is proportional to the acoustic pressure.

In addition, we can introduce the boundary con-
ditions (matrix M), and the connection between the
elements:{

Mϕ = 0 on the domain boundary
Ainiϕ∗ = 0 between the elements

(2)

with −→n the normal vector in the output direction and
ϕ∗ the numerical flux, that will be defined afterwards.

Multiplying equations (1) and (2) by a test function
ψ and integrating over a local open element ωe belong-
ing to the computational domain Ω with boundary
∂ωe gives the weak formulation,

∫
ωe

(
jωϕe + Ai∂iϕe + Bϕe

)
.ψedωe

+

∫
∂ωe\∂Ω

Ainiϕ
∗
e.ψ
−
e dΓ

+

∫
∂ωe∩∂Ω

(Mϕe − g) .ψedΓ = 0 (3)

where subscript e refers to the element ωe. Further-
more, the fact that the solution and the test function
can be discontinuous on the element edges let us in-
troduce the definition of the interior and the exterior
traces

ψ−e (x) = lim
x′→x and x′∈ωe

ψ (x′)

ψ+
e (x) = lim

x′→x and x′ /∈ωe

ψ (x′)
(4)

idem for ϕ−e and ϕ+
e (figure 1).

Figure 1. Element ωe adjacent to the computational do-
main boundary

For the same reason, the numerical flux Ainiϕ
∗
e

must be defined in order to impose the normal
flux conservation across the element boundaries. A
upwind scheme is chosen:

ϕ∗e =

{
ϕ−e for outgoing waves
ϕ+
e for ingoing waves

(5)

In the presented method, a technique flux −
vector splitting (FV S) is used to fully exploit the
hyperbolicity of the problem. As the matrix Aini is
diagonalizable, its eigenvectors are the phase speeds
of the characteristics along the local normal vector.
In addition, we can break it down into two matrices
Ain+

i and Ain−i , respectively associated to its posi-
tive and negative eigenvalues:

Aini = PΛP−1 = PΛ+P−1 + PΛ−P−1

= Ain+
i + Ain−i (6)

This decomposition associated with the choice of a
upwind scheme brings us to the next jump condition:

Ain−i
(
ϕ+
e − ϕ−e

)
= 0 (7)
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with

Ain−i = inf (un, 0)

(
−n⊗ n 0

0 0

)
(8)

+
un − c0

2

(
−n⊗ n n

nt 1

)
where un is the acoustic velocity normal to the ele-
ment boundary.

The weak formulation of the problem, after sum-
mation over the elements, is written as:

∫
ωe

(
jωϕe + Ai∂iϕe + Bϕe

)
.ψedωe

+
∑
e

∫
∂ωe\∂Ω

Ain−i
(
ϕ+
e − ϕ−e

)
.ψ−e dΓ

+

∫
∂ωe∩∂Ω

(Mϕe − g) .ψedΓ = 0 (9)

Finally, projected over the local basis, the problem
can be written as a system of linear equations

(jωN + K) Φ = 0 (10)

where N and K are respectively the global mass
and stiffness matrices.

2.2. Boundary Conditions

In order to avoid reflections at the open boundaries,
we use the decomposition in incoming and outgoing
waves. In this way, for a non-reflecting output condi-
tion, the matrix M is:

M = −Ain−i (11)

The source terms are also imposed with the same
condition of non-reflection, that is to say,

M = −Ain−i and g = ϕsource (12)

Finaly, let z = p
ρ0c0vn

be the reduced specific
impedance, M can be expressed as a function of the
reflection coefficient β = z−1

z+1 ):

M =
c0
2

(
(β + 1)n⊗ n (β − 1)n
− (β + 1)nt (1− β)

)
(13)

This matrix M is used both for impedance bound-
ary conditions and for the rigid wall boundary condi-
tions expressed by β = 1.

2.3. Inverse method

The inverse method requires the minimization of the
following objective function:

Υ (ϕ, z, zt, C) =

∫
Ωobs

{ϕcDG − ϕcMeas}t .

{ϕcDG − ϕcMeas} dxdy (14)

where ωobs is the measurement domain.
The BFGS-B algorithm (Broyden, Fletcher, Gold-

farb, Shanno for bounded variables) is used to solve
the optimization problem. The analytical formulation
of gradients Υ relative to each parameter z, zt and C
is obtained via the adjoint state.

∂Υ

∂z
= −

〈
∂Mβ

∂β

∂β

∂z
ϕ, ϕadj

〉
Γl

(15)

∂Υ

∂zt
= −

〈
∂Mβt

∂βt

∂βt
∂zt

ϕ,ϕadj
〉

Γt

(16)

∂Υ

∂C
=
〈
Ain−i ϕ0, ϕ

adj
〉

Γs
(17)

where ϕadj is the solution of adjoint problem, and Γl,
Γt Γs are respectively the liner, output and source
surfaces.

3. Analysis of results

The inverse method described above will be used to
calculate the impedance of a liner-type wiremesh.
The used data come from the NASA GFIT bench ([5]
and [6]) for which a large number of measurements
(31 microphones) provides a rapid convergence to a
suitable value.

The method was used for the case without flow (fig-
ure 3) and with flow at MC = 0.3 (Figure 4), both
with a SPL = 130 dB. The results of the optimiza-
tion are then processed to obtain a map of objective
function.

A confidence interval of impedance to assess the
robustness of the identification procedure is found for
a reduced objective function (see eq. 19) lower than
the desired threshold value, that is to say

Find z = θ + jχ for Υred 6 κ (18)

where θ is the resistance, χ the reactance and κ the
desired threshold value and with,

Υred =
Υ∑N

m=1 ‖ pmmeas ‖2
(19)
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Figure 2. Objective function in the impedance plane for
f=1600 Hz and Mc = 0

Figure 3. Results of impedance eduction of wiremesh liner
with NASA pressure measurements. Mc = 0

The figure (2) is an example of objective function
represented in the impedance plane at a given fre-
quency for κ = 0.01.

Figure 3 shows the impedance eduction results for
the case without flow with the confidence interval
(green colored surface) corresponding to the possible
values of θ (or χ) to have a value of the cost function
lower than κ. One can notice that the confidence in-
terval has a similar size for all the studied frequencies.
This means that the sensitivity of identification is the
same for all cases.

We can see now in figure 4, corresponding to the
case with flow M = 0.3, a frequency, that is to say
1400 Hz, for which the confidence interval is reduced,
sign of an accurate identification of impedance.

Figure 4. Results of impedance eduction of wiremesh liner
with NASA pressure measurements. Mc = 0.3

We then study the case of a conventional liner with
non-linear behavior obtained by a micro-perforated
plate, characterized by LDV measurements in the On-
era B2A bench [5]. In this way, we can test the robust-
ness of the code not only for pressure measurements,
but also for the measurement of velocity field above a
liner.

The results of the identification of the impedance
without flow (Figure 5) and with shear flow of Mc =
0.23 (figure 6) show results more robust than in the
case of identification with microphones. It can be ex-
plained by the high number of measurement points
(300 points of acoustic velocity) in 2 directions and
close to the liner.

Moreover, at high frequencies, the confidence inter-
val is lower than at low frequencies, thus ensuring a
more accurate identification.

4. Extension to porous media

The impedance eduction method can be extended to
the case of porous materials. This requires a compu-
tational domain in which the equations of acoustic
propagation in porous materials are resolved. The ob-
jective therefore is to identify parameters representa-
tive of the acoustic absorption of a porous material :
the flow resistance, porosity, etc.

EuroNoise 2015
31 May - 3 June, Maastricht

F. Simon et al.: Inverse method...

1182



Figure 5. Results of impedance eduction of micro-
perforated liner with Onera LDV measurements. Mc = 0

Figure 6. Results of impedance eduction of micro-
perforated liner with Onera LDV measurements. Mc =
0.23

4.1. Discontinuous Galerkin for the coupling
air-material

Discontinuous Galerkin method has been established
for the 1D problems, such as an impedance tube. The

method uses generalized Biot equations to solve the
acoustics within the material, as well as air-material
coupling conditions for propagating waves at the in-
terface.

Generalized Biot’s equations can be written as:

A∂ϕ+ Bϕ = g (20)

with

A =


kb + 4

3N 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0



and B =


0 γ̃ ρ̃ω2 0

ρ̃e
φ γ̃ω

2 0 0 ρ̃e
k̃f
ω2

0 −1 0 0
−1 0 0 0


where all the parameters used in these matrices

are described in [1] and the state vector is ϕ =
{∂xu, ∂xp, u, p}t.

With this matrix formulation, we can find the fol-
lowing weak formulation:

∫
ωe

(A∂iϕe + Bϕe) .ψedωe

+
∑
e

∫
∂ωe\∂Ω

Kn
(
ϕ+
e − ϕ−e

)
.ψ−e dΓ

+

∫
∂ωe∩∂Ω

(Mϕe − g) .ψedΓ = 0 (21)

where K is the numeric flux between two cells of
the mesh and M the boundary conditions.

In this case we can use the following numeric flux:

ϕ∗ =


{{∂xu}} − τ1 [[u]]
{{∂xp}} − τ2 [[p]]

{{u}}
{{p}}

 (22)

We obtain the matrix K such that:

K = 1
2


kb + 4

3N 0 2τ1
(
kb + 4

3N
)
n 0

0 1 0 2τ2n
0 0 0 1
0 0 1 0


For rigid wall boundary conditions, we can consider

the same approach as for the linearized Euler equa-
tions, that is to say:

M = n
2


0 0 −2τ1

(
kb + 4

3N
)
n 0

0 −2 0 0

0 2jn
˜ρeω

0 0

0 0 −1 0


Finally, the conditions at the air-material interface

is the continuity of pressure and displacement eq. (23):
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Table I. Characteristics of melamine foam
Thickness d [m] 0.04
Porosity φ 0.99
Flow resistivity σ

[
Nm−4s

]
12000

Viscous Dimension Λ [µm] 100
Thermic Dimension Λ′ [µm] 400
Tortuosity α∞ 1.01
Density ρ1

[
kgm−3

]
9

Shear modulus N [kPa] 86
Poisson coefficient ν 0.276
Damping η 0.75

pair = pmat

∂xp
air = ρairω

2(1− φ− φρ̃12

ρ̃22
)umat

+
φρair
ρ̃e

∂xp
mat

(23)

The next step will be, as for "impedance" eduction
method, to formulate an inverse method, called "Biot
parameters" eduction method, to identify parameters
characteristic of the material, from acoustic pressure
or velocity experimental data (see eq. (14)).

4.2. Results

The absorption coefficient of a melamine foam (see
Table I) was computed in frequency, assuming the
propagation of plane waves and determining the
acoustic pressure at two points, as in impedance tube
[2]. The results are then compared with a model type
Delany-Bazley [3] (see Figure 7).

Figure 7. Absorption coefficient with Delany-Bazley model
and Onera code

One can notice a good agreement between the re-
sults of the semi-empirical model of Delany-Bazley
and the numerical results of the developed code, which
is satisfying for the future "Biot parameters" eduction
method.

5. CONCLUSIONS

A study of the robustness of the Onera code of
impedance eduction was made for different cases
of grazing flow, a liner with a "wiremesh", from
data provided by NASA, and a conventional "micro-
perforated" liner, from data provided by Onera. For
the first type of material, we obtained a frequency
confidence interval, giving us an estimate of the ro-
bustness of the code with an array of microphones.
For the second case of material, the confidence inter-
val using LDV measurements is much smaller than
that obtained for wiremesh with pressure measure-
ments. This leads us to conclude that, if we want to
minimize the sensitivity of the eduction result, it will
be appropriate to use LDV measurements. Finally, a
proposal to extend the eduction code to porous ma-
terials was presented: that is to say, the weak for-
mulation of the problem, the numerical flux and the
boundary conditions. A first validation in a 1D case
has been made by comparison with results provided
by the semi-empirical model type Delany-Bazley. The
implementation of porous materials in the developed
code "Elvin" will continue in duct with grazing flow.
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