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Summary 

The Sabine absorption coefficients of finite absorbers are measured in a reverberation chamber 
according to the international standard ISO 354. They vary with the specimen size essentially due to 
diffraction at the specimen edges, which can be seen as the radiation impedance differing from the 
infinite case. Thus, in order to predict the Sabine absorption coefficients of finite porous samples, 
one can incorporate models of the radiation impedance. In this study, different radiation impedance 
models are compared with two experimental examples. Thomasson’s model is compared to Rhazi’s 
method when coupled to the transfer matrix method (TMM). These methods are found to yield 
comparable results when predicting the Sabine absorption coefficients of finite porous materials. 
Discrepancies with measurement results can essentially be explained by the unbalance between 
grazing and non-grazing sound field in the reverberation chamber. A better agreement is found 
when incorporating the modal decomposition method to the models.  

PACS no. 43.55.Ev, 43.55.Ka 
 
1. Introduction1 

The radiation of sound from plane surfaces is of 
special importance for many problems concerning 
noise and vibration. One example is the calculation 
of the sound transmission coefficient of a finite 
wall. The sound absorption of finite surface areas 
is another example. The sound pressure is a field 
variable, which is calculated via Kirchhoff-
Helmholtz equation. It is typically not the best 
measure for the radiated sound field, so that the 
radiated power is considered a better alternative. In 
all cases, the effect of the finiteness of the 
radiating surface must be included.  
Cremer and Heckl [1, 2] derived a formula to 
calculate the power radiated from a structure using 
the spatial Fourier transform. As the transformed 
velocity is directly used in the formula, the inverse 
transform is not required in the solution, which is 
computationally efficient. The power radiated 
from any spatially transformed velocity can be 
calculated. In [2], Cremer and Heckl made use of 
the formula to study the effect of radiation from 
finite vibrating panels. The approach is based on 
the spatial windowing of a single plane structural 

1Author to whom correspondence should be addressed 

wave so that the vibration velocity outside the 
finite area is zero.  
In many applied situations, the radiation efficiency 
is used to calculate the radiated power. Based on 
the formula provided by Cremer and Heckl, Villot 
et al. [3] also studied the radiated power and the 
radiation efficiency of finite structures using the 
same spatial windowing technique of plane waves. 
They applied the method to multi-layered 
structures using the transfer matrix method.  
The available techniques for determining the 
radiated power or radiated efficiency of a finite 
structure using spatial windowing of the formula 
suggested by Cremer and Heckl, have one 
common drawback in that the wave number 
spectrum is calculated directly for the case of 
radiation from a finite area, which is not the case 
in many practical applications.  
An alternative approach is suggested by Atalla et 
al. [4], who considered the sound power radiation 
of planar surfaces using a Rayleigh-integral based 
method in connection with the transfer matrix 
method, in order to account for the effect of the 
finite size. The method is known under the name 
of finite transfer matrix method (FTMM). The 
transfer matrix method is used along with the same 
spatial windowing as in [3] but the numerical 
integration is eased by two changes of variables. 
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This approach is commonly used for prediction of 
the lateral size effects on the acoustic absorption. 
The calculation of the radiation impedance being 
computationally heavy, Rhazi et al. [5] suggested 
an analytical simplification that allows for a faster 
computation of the radiated power of multilayered 
panels. The radiation impedance used in the 
FTMM is found to be the same radiation 
impedance as the one developed earlier by 
Thomasson [6]. 
In the case of sound absorption of finite patches, 
Thomasson [6] has shown that the area 
dependence, and thereby the so called edge-effect, 
can be described with a specific radiation or field 
impedance which depends on the geometrical 
shape of the absorption patch and the incidence 
angles. He derived simple formulas for the area 
correction of the absorption coefficient using a 
variational approach. 
The purpose of this paper is to compare the results 
of Rhazi et al. with those of Thomasson when 
predicting the random incidence absorption 
coefficient of finite porous materials. Porous 
absorbers mounted on a rigid wall and backed by a 
cavity are investigated. A short overview of the 
possible explanations for the disagreement 
between simulation results and measured data will 
be given and ways of improving the models 
suggested.  
Although both models hold for extendedly reacting 
surfaces, Thomasson originally assumed that the 
wave transmitted into the porous material is 
refracted so that it propagates effectively only 
perpendicular to the surface. This is referred to as 
a locally reacting surface. The assumption of local 
reaction is widely used in room acoustic 
simulations, the main reason being its simplicity 
compared to non-local or extended reaction 
models. However, the adequacy of the assumption 
of local reaction is questionable for porous layers 
backed by an air cavity [7]. The present paper will 
show the effect of incorporating extended reaction 
models when predicting the random incidence 
absorption coefficient of finite porous materials.  
 
2. Theory 

2.1. Random incidence absorption coefficient 
The theoretical random incidence absorption 
coefficient for plane wave incidence on an 
infinitely large surface is calculated using Paris’ 
law by [8, 9] 

 
𝛼𝛼𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = � 𝛼𝛼𝑖𝑖𝑟𝑟𝑖𝑖(𝜃𝜃𝑖𝑖) sin(2𝜃𝜃𝑖𝑖)

𝜋𝜋 2�

0
𝑑𝑑𝜃𝜃𝑖𝑖 ,                                (1) 

 
where 𝛼𝛼𝑖𝑖𝑟𝑟𝑖𝑖(𝜃𝜃𝑖𝑖) is the oblique incidence absorption 
coefficient at the incidence angle 𝜃𝜃𝑖𝑖. It assumes 
that the intensity of the incident sound is uniformly 
distributed over all possible directions, and the 
phases of the incident waves on the absorber are 
randomly distributed. Large discrepancies between 
the theoretical random incidence absorption 
coefficient and the measured Sabine absorption 
coefficient are found throughout the entire 
frequency range of interest [10, 11], mainly due to 
non-uniform sound intensity on absorbers [12] and 
finite specimens [13]. 

2.2. Size corrected absorption coefficient 

This section aims to theoretically compare the 
formulation by Thomasson [6] and Atalla et al. [4] 
for predicting the random incidence absorption 
coefficient of finite porous materials. As we shall 
see, both methods lead to the same formulation, 
but the approach is fundamentally different. 
Thomasson [6] makes use of a variational 
approach to derive the radiation impedance of a 
finite size specimen (Rayleigh-integral based) and 
simple formulas for the area correction of the 
absorption coefficient. Instead, Atalla et al. [4] 
directly solve the Rayleigh-integral. The idea 
behind their approach is to replace the infinite size 
radiation impedance in the receiving medium by 
the radiation impedance of an equivalent baffled 
window. 

2.2.1. Thomasson’s original model 
Using a variational approach, Thomasson derived 
a size correction for the random incidence 
absorption coefficient by considering the average 
radiation (or field) impedance for a finite size at an 
oblique angle of incidence as follows [6] 
 
𝛼𝛼𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠 = 2� 4𝑅𝑅𝑅𝑅(𝑍𝑍𝑠𝑠)

|𝑍𝑍𝑠𝑠 + 𝑍𝑍𝑟𝑟���(𝜃𝜃𝑖𝑖)|2
𝜋𝜋 2�

0
sin(𝜃𝜃𝑖𝑖)𝑑𝑑𝜃𝜃𝑖𝑖 ,                     (2) 

 
where 𝑍𝑍𝑠𝑠 is the normal surface impedance of the 
test specimen, 𝑍𝑍𝑟𝑟���(𝜃𝜃𝑖𝑖) is the averaged radiation 
impedance over azimuthal angles from 0 to 2𝜋𝜋 
expressed as 𝑍𝑍𝑟𝑟���(𝜃𝜃𝑖𝑖) = ∫ 𝑍𝑍𝑟𝑟(𝜃𝜃𝑖𝑖)𝑑𝑑𝑑𝑑 2𝜋𝜋⁄2𝜋𝜋

0  and 𝑑𝑑 is 
the azimuthal angle. 𝑍𝑍𝑟𝑟(𝜃𝜃𝑖𝑖) is the radiation 
impedance, which is known to be 1 cos(𝜃𝜃𝑖𝑖)⁄  for an 
infinitely large plate. The radiation impedance for 
a finite panel is expressed as follows [6] 
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𝑍𝑍𝑟𝑟(𝜃𝜃𝑖𝑖) = 𝑗𝑗𝑗𝑗
𝑆𝑆 ��𝐺𝐺(𝑀𝑀,𝑀𝑀0)𝑅𝑅𝑗𝑗𝑗𝑗�𝜇𝜇𝑥𝑥(𝑥𝑥0−𝑥𝑥)+𝜇𝜇𝑦𝑦(𝑦𝑦0−𝑦𝑦)�𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑0𝑑𝑑𝑑𝑑0 ,     (3) 

 
where 𝑗𝑗 is the wavenumber, 𝑆𝑆 = ∬𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑, 𝜇𝜇𝑥𝑥 =
sin(𝜃𝜃𝑖𝑖) cos(𝑑𝑑), 𝜇𝜇𝑦𝑦 = sin(𝜃𝜃𝑖𝑖) sin(𝑑𝑑), 𝐺𝐺 = (2𝜋𝜋𝑅𝑅)−1𝑅𝑅𝑗𝑗𝑗𝑗𝑗𝑗  
and 𝑅𝑅 = �(𝑑𝑑 − 𝑑𝑑0)2 + (𝑑𝑑 − 𝑑𝑑0)2. 
 
Note that here 𝑅𝑅𝑗𝑗𝑗𝑗𝑗𝑗 is assumed, while Thomasson 
originally used a negative time convention. The 
calculation of the average radiation impedance 
requires numerical integration. Alternatively, one 
can refer to [6] where 𝑍𝑍𝑟𝑟���(𝜃𝜃𝑖𝑖) is included for some 
common shapes. Averaging the radiation 
impedance over azimuthal angles is a suitable 
approximation when trying to reduce the 
calculation cost.  

2.2.2. Finite transfer matrix method (FTMM) 
To take into account the effect of the finite size, 
Atalla et al. [4] suggested a method that makes 
direct use of the Rayleigh-integral in connection 
with the transfer matrix method for calculation of 
the surface impedance of the material under test. 
The idea behind the approach is to replace the 
infinite size radiation impedance in the receiving 
medium by the radiation impedance of an 
equivalent baffled window. The size corrected 
random incidence absorption coefficient is then 
given by 
 
𝛼𝛼(𝜃𝜃𝑖𝑖 ,𝑑𝑑) = 1

cos(𝜃𝜃𝑖𝑖)
4𝑅𝑅𝑅𝑅(𝑍𝑍𝑠𝑠(𝜃𝜃𝑖𝑖,𝑑𝑑))

|𝑍𝑍𝑠𝑠(𝜃𝜃𝑖𝑖 ,𝑑𝑑) + 𝑍𝑍𝑟𝑟(𝜃𝜃𝑖𝑖 ,𝑑𝑑)|2  ,               (4) 
 
where 𝑍𝑍𝑠𝑠 is the normal surface impedance of the 
test specimen. The “baffled” radiation impedance 
introduced by Atalla et al. [4] is the same radiation 
impedance as the one defined earlier by 
Thomasson except for the opposite time 
convention. An analytical simplification of the 
FTMM has later been suggested by Rhazi et al. [5] 
that allows for a faster computation of the radiated 
power of multilayered materials. This FTMM 
version will be examined in the following. 
It can be observed that for infinitely large 
specimens, that is when replacing the “baffled” 
radiation impedance by the inverse of the cosine, 
equation (4) becomes  
 

𝛼𝛼𝑖𝑖𝑟𝑟𝑖𝑖(𝜃𝜃𝑖𝑖) = 4𝑅𝑅𝑅𝑅(𝜁𝜁) cos(𝜃𝜃𝑖𝑖)
|𝜁𝜁|2cos2(𝜃𝜃𝑖𝑖) + 2𝑅𝑅𝑅𝑅(𝜁𝜁)cos(𝜃𝜃𝑖𝑖) + 1 

 
 

= 1 − �
𝜁𝜁 − 1

cos(𝜃𝜃)
𝜁𝜁 + 1

cos(𝜃𝜃)
�

2

,                                                       (5) 
 
 

where 𝜁𝜁 is the specific surface impedance 𝑍𝑍𝑠𝑠 𝜌𝜌0𝑐𝑐0⁄ , 
with 𝜌𝜌0 the air density and 𝑐𝑐0 the speed of sound in 
air. It is worth underlining that replacing 1 cos(𝜃𝜃)⁄  
in equation (5) by the “baffled” radiation impedance 
is not strictly correct. 
Paris’ law applied to equation (4) leads to the exact 
same formulation of the size corrected random 
incidence absorption coefficient than equation (2). 
Differences lie in the approach and in the averaged 
radiation impedance over azimuthal angles used in 
Thomasson’s formulation. It should also be noted 
that both formulations assume the absorbing 
specimen to be flush-mounted in an infinite baffle, 
which differs from most practical application.  

2.3. Local vs. extended reaction model 
Regardless of the formalism, the surface impedance 
of the material can be calculated according to the 
transfer matrix method (TMM), which has been 
thoroughly described in [14]. When calculating the 
surface impedance, the simplest surface reaction 
model is referred to as locally reacting and 
assumes that the wave transmitted into a porous 
material is refracted so that it propagates 
effectively only perpendicular to the surface [15]. 
In other words, the surface impedance does not 
change with the angle of incidence. However, 
extended reaction is considered physically more 
correct, in particular for porous materials backed 
by an air-cavity. When extended reaction is 
assumed instead, Snell’s law determines the angle 
of transmission and waves are no longer 
transmitted in the perpendicular direction to the 
surface of interest. For absorbers with an air gap, 
large differences between the two reaction models 
are found, since the surface impedance at oblique 
incidence is noticeably different from the normal 
incidence surface impedance [7]. Assuming 
extended reaction, the size corrected random 
incidence absorption coefficient can be expressed 
as 
 
𝛼𝛼𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠 = 2� 4𝑅𝑅𝑅𝑅(𝑍𝑍𝑠𝑠(𝜃𝜃𝑖𝑖))

|𝑍𝑍𝑠𝑠(𝜃𝜃𝑖𝑖) + 𝑍𝑍𝑟𝑟���(𝜃𝜃𝑖𝑖)|2
𝜋𝜋 2�

0
sin(𝜃𝜃𝑖𝑖)𝑑𝑑𝜃𝜃𝑖𝑖 .              (6) 

 
If using the averaged radiation impedance over 
azimuthal angles. It should be noticed that 
Thomasson originally assumed local reaction. A 
similar variational approach has recently been used 
by Brunskog [16], who showed that, for the forced 
sound transmission of a finite wall, the use of 
extended reaction results in the same formulation. 
This also holds for the case of absorption of finite 
patches, resulting in equation (6). 
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3. Method 

In the following, the FTMM is systematically 
compared to Thomasson’s model assuming 
extended reaction. It can be anticipated from the 
theoretical section that a good agreement between 
the results will be found. The two surface reaction 
models will be examined using Thomasson’s 
formulation. The simulations are conducted on 
“known” specimens for experimental comparison, 
and denoted as Specimen 1 and Specimen 2 
respectively: 

(1) 100 mm Rockwool (flow resistivity 19.8 
kPa.s.m-2) with rigid backing; 

(2) 100 mm Glass wool (flow resistivity 12.8 
kPa.s.m-2) with a 100 mm air-cavity 
backing. 

The absorption of the first specimen has been 
measured according to ISO 354 in a round robin 
test including 13 European reverberation chambers 
[17]. The second specimen is referred to as the 
“reference absorber” and has been suggested in 
previous studies to calibrate the reverberation 
chambers for absorption coefficient measurements 
[18]. The reference absorber is measured in an 
ongoing round robin test, which includes so far 7 
European reverberation chambers (part of the 
results has been published in [18]). The acoustical 
properties of both porous materials are modelled 
using Delany-Bazley’s empirical model [19] or 
alternatively its modification by Miki [20]. Both 
require the flow resistivity as the only parameter. 
 
4. Results and analysis 

Figures 1 and 2 show the simulation results for 
Specimen 1 and Specimen 2 respectively. The 
FTMM is compared to Thomasson’s model under 
extended reaction assumption. Thomasson’s 
results are displayed for both local and extended 
reaction assumptions. The respective round robin 
mean results are superimposed for comparison. 
A good agreement is found in both cases between 
the FTMM and Thomasson’s model. The small 
deviations might be explained by the use of the 
average radiation impedance over azimuthal angles 
in Thomasson’s formulation. In the case of a rigid 
backing, the two surface reaction models yield 
equivalent results. Large discrepancies are 
however found in the low-frequency range in the 
case of a backing cavity. Extended reaction is best 
suited to the cavity case and should systematically 
be used regardless of the configuration (with or 

without cavity backing). The results based on 
extended reaction only will be discussed in the 
following. 
The simulation results are overestimating the 
measured absorption in the low frequency range, 
by up to 25% for the rigid backing condition and 
by up to 65% in the presence of a cavity. The 
following discussion aims to give an overview of 
the possible explanations for such a disagreement 
between simulation results and measured data. 
However, this paper has no intention to give a 
complete survey. Additionally, a few suggestions 
are given to overcome the issue. 
A straightforward explanation would be the lack of 
a diffuse sound field in the low frequency range in 
the measurement facilities. More precisely, the 
results reveal an unbalance between the sound 
intensities contained in the grazing sound field and 
the non-grazing sound field respectively. In other 
words, the intensity of the incident sound on the 

Figure 1 – Absorption coefficient of Specimen 1 -  
FTMM vs. Thomasson. Mean round robin test results 
superimposed. Area of the test specimen: 3 x 3.6 m 

Figure 2 – Absorption coefficient of Specimen 2 - 
FTMM vs. Thomasson. Mean round robin test results 
superimposed. Area of the test specimen: 3 x 3.6 m 
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test specimen is not uniformly distributed over all 
possible directions unlike Paris’ law (see equation 
(1)). An easy trick to avoid this problem is to place 
an upper limit on the angles of incidence in the 
integration associated with Paris’ law. Figure 3 
shows the effect of truncating the integration angle 
to 78 degrees (this arbitrary truncation value is by 
no way a suggestion, but aims to provide a better 
understanding of the sound field behavior in the 
actual measurement situation). Using the 
truncation, the predicted absorption is lower in the 
low-frequency range and closer to the 
experimental data. This indicates that overall, in 
the test chambers, less sound intensity is contained 
in the grazing sound field than it does in theory. 
The grazing part of the sound field is most likely 
redirected into the non-grazing part via the 
diffusers installed in the chambers. The truncation 
method leads to results closer to the experimental 
data in that it artificially removes part of the 
contribution of the grazing sound field in the 
model. Still, the adjustment of the truncation 
angles remains uncertain. 
Another solution is based on the modal 
decomposition method (MDM), as described by 
Schultz et al. [21], who resolved the sound field 
inside a rectangular duct. The method is here 
extended to the case of a plane-parallel space, 
which mimics the reverberation chamber, and 
considers a two-dimensional modal field in a plane 
parallel to the absorptive specimen. Schultz et al. 
[21] express the solution to the Helmholtz equation 
in a closed area as the summation of transverse 
modes. Hence for a two-dimensional modal field, 
the transverse wavenumber 𝑗𝑗𝑗𝑗 = 𝑗𝑗0 sin(𝜃𝜃) is 
replace by 
 
 
𝑗𝑗𝑚𝑚𝑟𝑟 = ��𝑚𝑚𝜋𝜋𝐿𝐿𝑥𝑥

�
2

+ �𝑛𝑛𝜋𝜋𝐿𝐿𝑦𝑦
�
2

.                                      (7) 
 
 
The incident angle 𝜃𝜃𝑚𝑚𝑟𝑟 associated to the (𝑚𝑚,𝑛𝑛) 
mode is therefore 
 
𝜃𝜃𝑚𝑚𝑟𝑟 = sin−1 �𝑗𝑗𝑚𝑚𝑟𝑟

𝑗𝑗0
� .                                                 (8) 

 
Modal decomposition involves the use of a 
discrete sum over the (𝑚𝑚,𝑛𝑛) modes so that 
equation (2) becomes 
 
 
𝛼𝛼𝑚𝑚𝑚𝑚𝑟𝑟𝑟𝑟𝑚𝑚 = ∑ ∑ 𝛼𝛼𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠(𝜃𝜃𝑚𝑚𝑟𝑟)𝑟𝑟𝑚𝑚

∑ ∑ cos(𝜃𝜃𝑚𝑚𝑟𝑟)𝑟𝑟𝑚𝑚 sin(𝜃𝜃𝑚𝑚𝑟𝑟),                  (9) 
 

which simply results in another way of integrating 
the incident sound field.  

Figure 4 compares the size-corrected absorption 
coefficient estimated with the FTMM under modal 
excitation, the FTMM under diffuse field 
excitation and the FTMM under diffuse field 
excitation limited to an angle of incidence of 78°. 
The simulations are performed for 100 mm Glass 
wool with air-cavity backing. The modal 
decomposition method is here applied for a simple 
plane-parallel reverberation chamber (6.26 x 7.86 
x 4.90 m), which took part in the ongoing round 
robin test. Limiting the integration angle to 78° is 
an empirical method which allows avoiding 
grazing waves. The modal decomposition method 
retrieves this method by using the actual 
dimensions of the room. However the model does 

Figure 3 – Absorption coefficient of Specimen 2 – 
Truncation of the integration angle in FTMM. Mean 
round robin test results superimposed. Area of the test 
specimen: 3 x 3.6 m 

Figure 4 – Absorption coefficient of Specimen 2 – 
FTMM – diffuse field excitation vs. modal excitation. 
Measurement results in the chamber of concern 
superimposed. Area of the test specimen: 3 x 3.6 m 
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not allow for detailed implementation of the 
geometry, including boundary or panel diffusers 
installed in the actual reverberation chamber. 
Discrepancies however remain between the 
measured and simulated data. A plausible 
explanation is that the model assumes the 
absorptive specimen to be flush-mounted in an 
infinite baffle. This is evidenced by the fact that 
the disagreement is larger in the case of the cavity, 
where the total height of the sample is increased. It 
is however not straightforward to predict the actual 
behavior of the sound field in the presence of such 
a discontinuity. Future work could examine the 
possibility of including the effect of the 
discontinuity within the available models. A more 
systematic analysis of the effect of flush mounting 
on measurement results would also be required. 
 
5. Conclusions 

The radiation impedance models suggested by 
Thomasson [6] and Rhazi et al. [5] have been 
compared when predicting the random incidence 
absorption coefficient of finite porous materials. 
The methods are found to yield comparable results 
and hold for extendedly reacting surfaces.  
Discrepancies with measurement results can 
essentially be explained by the unbalance between 
grazing and non-grazing sound field in the 
reverberation chamber. Promising results are found 
when incorporating the modal decomposition 
method. Future work will examine the effect of the 
mounting of the test specimen in the reverberation 
chamber, which differs from the flush mounting in 
an infinite baffle as assumed in the models. 
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