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Summary
Wave-based room acoustic simulations are becoming more popular as the available compute power
continues to increase. The definition of boundary conditions and acoustic impedances is of fundamen-
tal importance for these simulations to succeed in representing a realistic acoustical space. Acoustic
impedance databases exist in terms of absorption coefficients, which are usually measured in reverber-
ation chambers. In this type of measurements, the sound field is assumed to be diffuse, a condition
which is not met in most rooms. In particular at low frequencies, where wave-based simulations
are possible, a different approach is sought as an alternative to acoustic impedance measurements.
This paper focuses on a recently proposed method for estimating surface acoustic impedances. This
method is based on the use of a numerical room model, and does not require the assumption of
a diffuse field. Assuming that the geometry of the room is known, a finite difference time domain
(FDTD) simulation is matched with measured data by solving an optimization problem. The set-up
for such a measurement method consists only of a set of microphones and a loudspeaker. This could
be applied in every room, removing the need for expensive facilities such as reverberation chambers.
The solution of the optimization problem leads to the sought parameters of the acoustic surface
impedances. In this paper the adjoint method is used for the computation of the derivative in the
optimization problem. This method enables a large number of decision variables in the optimization
problem making it possible to account for inhomogeneities of the surface acoustic impedance and
hence to avoid the need to specify the different acoustic impedance surfaces beforehand.
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1. Introduction

Wave-based room acoustic simulations are becoming
more popular as the available compute power contin-
ues to increase. In particular, the finite difference time
domain (FDTD) method is receiving a lot of attention
especially since its boundary model formulation was
improved [1]. However, there is a lack of input param-
eters for this boundary model, i.e. of measured acous-
tic impedances. In fact acoustic impedances are usu-
ally measured in terms of absorption coefficients using
reverberation chambers where the sound field is as-
sumed to be diffuse [2]. Such an ideal sound field rarely
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occurs in real rooms and is indeed also not present in
low frequency wave-based simulations. Therefore the
usage of these absorption coefficients as input param-
eters for wave-based simulations is questionable.

In [3] a new method for estimating acoustic
impedances was proposed. Assuming the room geom-
etry and source distribution to be known, an opti-
mization problem that minimizes the misfit between
simulated and measured sound pressure was solved
to obtain an estimation of the acoustic impedances.
Using the boundary element method (BEM) for the
wave-based room acoustic simulation, the optimiza-
tion problem was posed for singular frequencies, there-
fore requiring extensive spatial sampling. An alterna-
tive approach using the FDTD method was presented
in [4] where it was shown that the setup can be greatly
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simplified and reduced to a loudspeaker and a set of
microphones when a narrowband simulation is per-
formed.

In this paper the optimization algorithm of [4] is
further developed. Here, the adjoint method is used,
which enables the efficient computation of the gradi-
ent of the cost function almost independently of the
number of the decision variables of the optimization
problem. In [3,4] each acoustic impedance surface, e.g.
each wall of the room, was modeled using a single
acoustic impedance. It is shown here that if inhomo-
geneities are present in the acoustic impedance sur-
faces this can lead to a failure of the method. Using
the adjoint method it is possible to seek for a different
acoustic impedance at each point of the discretized
boundary surfaces. Therefore, if inhomogeneities are
present, these will be reconstructed. Moreover there
is no longer a need to specify the acoustic impedance
surfaces manually. Having an increased number of de-
cision variables, however, the main disadvantage of
the presented method is that the optimization prob-
lem can become ill-posed for certain measured data
sets and a regularization is necessary. The adjoint
method has been widely used in other fields such as
full-waveform inversions in geophysics [5] and imag-
ing techniques [6] but its application for acoustic
impedance identification in room acoustic has so far
not been studied, to the best of authors’ knowledge.

2. The finite difference time domain
method

The sound field in a room may be predicted by solv-
ing the acoustic wave equation, e.g. using the follow-
ing partial differential equation (PDE), boundary con-
ditions (BCs) and initial conditions (ICs) [2]:

PDE 4p− 1

c2
∂2p

∂t2
= s on Ω× τ

BCs
∂p

∂t
= −cξ∇p · n on ∂Ω× τ

ICs
∂p

∂t
= p̂0, p = p0 on Ω

(1)

where Ω ⊂ R3 is the spatial domain defining the room
geometry, τ ⊂ R+ is temporal domain, p(x, y, z, t) :
R4 → R is the sound pressure, s(x, y, z, t) is the source
distribution, 4 is the Laplacian operator, n is the
normal vector with respect to the boundary surface
∂Ω, ξ : ∂Ω→ R is the specific acoustic impedance , c
is the speed of sound and p̂0, p0 : R3 → R are the ICs.

Analytical solutions of (1) exist only for simple ge-
ometries and hence it is typically necessary to per-
form a discretization. The FDTD method discretizes
the sound pressure and source distribution in a uni-
form grid with spatial resolution X, and in time with
temporal resolution T , e.g. for the sound pressure

p(x, y, z, t) ≈ p(lX,mX, iX, nT ) = pnl,m,i. (2)

Centered finite differences are applied to approximate
the second-order derivatives of (1). Spatial and tem-
poral resolution are bounded for stability reasons by
the ratio cT

X ≤ λc, where λc is the Courant number,
i.e. the maximum ratio between spatial and temporal
resolution where stability is ensured and numerical er-
rors are minimized [1]. When explicit FDTD schemes
are employed this approximation leads to the update
equation

pn+1
l,m,i = Pnl,m,i − pn−1

l,m,i + snl,m,i, (3)

which represent the PDE of (1). The term Pnl,m,i rep-
resents the approximation of the Laplacian which con-
sists of the weighted sum of the 26 neighbor samples
of pnl,m,i and p

n
l,m,i itself. Different weight choices lead

to different FDTD schemes which can be found in [1].
In this paper the 19-samples ISO1 scheme will be em-
ployed.

When at the boundary, Pnl,m,i will miss a number
of neighbor samples, depending on the nature of the
boundary, e.g. walls, inner/outer edges, inner/outer
corners and other cases. These missing neighbor sam-
ples can be used to enforce the BCs of (1) as well as
continuity conditions. The modified update equation
will become, e.g. for a wall:

(1 + λc/ξb) p
n+1
l,m,i = P̃nl,m,i+(λc/ξb − 1) pn−1

l,m,i,(4)

where P̃nl,m,i is the weighted sum having 9 neigh-
bor samples missing and modified weights due to en-
forced BCs. Notice that the subscript index b indicates
the position of ξb on the discretization of ∂Ω.

Problem (1) is converted into a set of linear equa-
tions that is typically solved iteratively using equa-
tions (3), (4) and other equations obtained from other
types of BCs. Nevertheless, for illustration purposes,
it is convenient to look at the structure of the matri-
ces that arise in such a linear system. By vectorizing
the tensors pnl,m,i and snl,m,i for each n, it is possible
to group all the equations and write:

Q+pn+1 −Apn −Q−pn−1 = sn (5)

where Q+ and Q− are NxNyNz ×NxNyNz diagonal
matrices having ones at the indexes where the update
equation is (3) and having coefficients e.g. (1 +λc/ξb)
and (1−λc/ξb) for the wall-modified update equation
(4), respectively. The vectors pn and sn are NxNyNz
dimensional vectors containing the vectorization of
the sampled sound pressure pnl,m,i and source distribu-
tion snl,m,i for the time samples n. HereNx,Ny,Nz are
the number of spatial samples used for each cardinal
direction. TheAmatrix represents the approximation
of the Laplacian and consists of a NxNyNz×NxNyNz
sparse matrix having, for the general explicit scheme,
27 diagonals containing zero elements at the indexes
where the BCs are enforced. Notice that the acoustic
impedance ξb appears only in the matrices Q±.
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Figure 1. Sparsity pattern of the B matrix.

The final linear system of equations can be obtained
by stacking all pn and sn into two compound vectors
and is given as

Bp = s, (6)

where p and s are now NxNyNz(Nt + 2) dimensional
vectors. The sparsity pattern of B is shown in Fig. 1
for a cubic room having NxNyNz = N3

x spatial sam-
ples and Nt = 2 temporal samples. It can be noticed
that for n = −1 and n = 0 the ICs (here assumed to
be zero) are enforced using an identity matrix I.

3. The optimization algorithm

For a given room geometry and the source distribu-
tion,K microphones are used to record the sound field
in the room for Nt time samples. The impedance vec-
tor ξ∈ RNξ , which contains Nξ elements that model
the acoustic impedance surfaces of the room, can be
estimated by solving the following optimization prob-
lem [4]

min
ξ

f =
1

2
‖Fp− p̃‖22

s. t. Bp = s,

ξmin ≤ ξ ≤ ξmax,

(7)

The cost function f represents the misfit function,
i.e. the l2-norm of the residual between the measured
sound pressure p̃ and the sound pressure produced
by the FDTD method at the microphone positions.
F is a selection matrix that selects the KNt samples
out of p that correspond to the measured sound pres-
sure samples of p̃. The equality constraint is the lin-
ear system of equations given by the FDTD method
and the inequalities are box constraints to prevent ξ
to reach non-physical values e.g. a negative acoustic
impedance.

Due to the fact that the acoustic impedances con-
tained in ξ appear in the matrix B, the equality con-
straint of (7) is nonlinear. This optimization problem
is therefore non-convex and can be solved using se-
quential quadratic programming (SQP) [7]. Starting

from an initial guess ξ0, and substituting the equal-
ity constraint into the cost function, (7) can be locally
approximated by the following quadratic optimization
problem:

min
pk

f(ξk) +∇f(ξk)Tdk + dTk∇2f(ξk)dk

s. t. ξmin ≤ ξ ≤ ξmax,
(8)

where the step dk = ξk − ξk−1 gives a new value
ξk. After having ensured with a proper line-search
method [7] that the step gives a sufficient decrease
of the cost function this procedure can be repeated
iteratively until a local minimum is found.

At each iteration of the SQP method, the gradient
∇f(ξk) and the Hessian ∇2f(ξk) are needed. Typi-
cally ∇f(ξk) is computed numerically, e.g. using fi-
nite difference, while the Hessian ∇2f(ξk) is usually
replaced by an approximation using techniques such
as Gauss-Newton (GN) or BFGS [7], since its numer-
ical computation is expensive. In [4] ∇f(ξk) was eval-
uated using finite difference, which required the com-
putation of a FDTD simulation for each component
of ξ. However, when the number of sought acoustic
impedances is high, such an approach can easily be-
come unfeasible. In the following subsection the ad-
joint method is described specifically for the FDTD
approach. This method enables the calculation of the
gradient with the computation of only two FDTD
simulations, almost independently of the number of
impedances [5].

3.1. The Adjoint Method

The derivative of the cost function with respect to an
arbitrary acoustic impedance ξb may be written as

∂f

∂ξb
(ξ) =

∂p

∂ξb

T

FT (Fp− p̃). (9)

Here ∂p
∂ξb

represents the computational bottleneck for
the computation of the gradient. Taking the derivative
with respect to ξb of the equality constraint of (7)

∂B

∂ξb
p + B

∂p

∂ξb
= 0, (10)

it can be seen that ∂B
∂ξb

actually represents an ex-
tremely sparse matrix: looking at Fig. 1, ξb appears
only in the diagonal matrices Q± where the BCs are
imposed. From (10) it follows that

∂p

∂ξb
= −B−1 ∂B

∂ξb
p (11)

and substituting this into (9), leads to

∂f

∂ξb
(ξ) = −

[
∂B

∂ξb
p

]T [
B−1

]T
FT (Fp− p̃)︸ ︷︷ ︸
λ

, (12)
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where λ is the solution of the adjoint problem:

λTB = FT (Fp− p̃) = ŝ. (13)

Here ŝ consists of a new source distribution. The resid-
ual (Fp−p̃) is expanded into a vector of the same size
as p due to the transpose of the selection matrix F.
Hence in the adjoint problem the source distribution
consists of point sources appearing at the microphone
positions where a particular source signal is given as
the residual between measured and simulated signals
of the corresponding microphone. It can be noticed
that such a problem could be solved iteratively using:

−Q−λn+1 −ATλn + Q+λn−1 = ŝn. (14)

However, if a time inversion is applied the system of
equations becomes the same as the one in (5) with
the only difference that A is transposed and that the
source distribution consists of a set of sources po-
sitioned at the microphone positions and where the
source signals are now the time-reversed residuals. Fi-
nally, looking back at equation (12), it can be seen
that in order to obtain the full gradient ∇f(ξ), each
of the sparse matrices ∂B

∂ξb
for i = 1 . . . Nξ must be

multiplied by p and these products are then multi-
plied by the solution of the adjoint problem λ. Hence
only two FDTD simulations are needed to obtain p
and λ for each iteration of the SQP procedure.

A more natural choice of the decision variables of
the optimization problem would be the admittance,
i.e. the inverse of the acoustic impedance, υ = 1/ξ. In
fact, in the computation of ∂B

∂υb
p the derivative of (4)

with respect to υb will simply be λc(pn+1
l,m,i − p

n−1
l,m,i).

If the derivative is with respect to ξb is computed,
the acoustic impedance ξb would still be present in
the last expression. For this reason, in the following
the impedances will be replaced by admittances and
the decision variables ξ will be represented by υ, the
vector containing the admittances used to model the
admittance surfaces. Hence, for the calculation of p, it
is only necessary to save the sound pressure difference
λc(p

n+1
l,m,i − pn−1

l,m,i) at the boundary positions, which
represents computing ∂B

∂υb
p. This data can then be

used in the iterative procedure of solving the adjoint
problem, to directly compute the product ( ∂B∂υbp)Tλ

of (12). Therefore neither p nor λ have to be fully
stored.

3.2. Tikhonov regularization

The optimization problem (7) is an inverse problem
and depending on the measured sound pressure p̃ it
can become ill-posed. This condition can occur when
the microphone signals contain redundant informa-
tion or when the system is not fully excited, e.g. when
a narrowband signal is used in the source distribution.
In fact, at high frequencies the solution of the FDTD
method is corrupted by numerical errors. In partic-
ular, the isotropic scheme used in this paper has a

numerical relative error inferior to 2% up to 0.175fs,
where fs is the sampling frequency. Therefore the data
fitting should be performed below this frequency up-
per limit. Moreover it is well known that admittances
are frequency-dependent, meaning that their estima-
tion should be performed in narrow bands where they
can be assumed to be frequency-independent. In order
to compensate for the ill-posed nature of the prob-
lem, the cost function can be modified by adding a
Tikhonov regularization [8]

f̂ = f+

λx
2

(
‖Wxυ‖22 + ‖Wyυ‖22 + ‖Wxyυ‖22

)
, (15)

where f is the misfit function found in (7), f̂ is the
regularized cost function andWi are weighting matri-
ces that approximate the gradient ∇iυ on the admit-
tance surface over the directions i = (x, y, xy) using
finite difference operators. This type of regularization
enforces smoothness on the estimated admittance sur-
faces by minimizing their gradient. The parameter λx
weights this smoothing operation over the misfit func-
tion. If there is a lack of information in p̃ the regular-
ization gives higher preference to a smooth solution.
The weight of the smoothing operator should be care-
fully chosen not to be stronger than the weight of the
misfit function, otherwise the optimization would not
fully exploit all the information contained in the mea-
sured data.

The gradient of the regularized cost function be-
comes

∇f̂(υ) = ∇f(υ)+

λx
(
WT

xWxυ + WT
yWyυ + WT

xyWxyυ
)
, (16)

where ∇f(υ) is obtained using the adjoint method.
The Wi matrices can be constructed as follows. Let
the vector υ be the vectorization of the admittances
of the various surfaces of the room, e.g. for a cubic
room

υ = [υTlw,υ
T
rw,υ

T
fw,υ

T
rew,υ

T
c ,υ

T
f ]T , (17)

where the subscripts indicate left wall, right wall,
front wall, rear wall, ceiling and floor. Let υlw be an
NxNy vectorization of an Nx×Ny admittance surface
obtained by stacking the Nx long columns of the ad-
mittance surface. A one-dimensional finite difference
matrix can be constructed

Dx,1D =

1 −1
. . . . . .

1 −1

 ∈ R(Nx−1)×Nx(18)

which can be used to obtain the gradient of an Nx
long vector. Let INy be the Ny ×Ny identity matrix,
if a two dimensional finite difference operator over the
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x direction is wanted, this can be obtained by the
following Kronecker product

Dx,2D = INy ⊗Dx,1D. (19)

Similarly the y direction gradient and the trans-
verse direction gradient can be obtained by Dy,2D =
Dy,1D ⊗ INx and Dxy,2D = Dy,1D ⊗ Dx,1D, respec-
tively. The final Wi is given by the block diagonal
matrix of the various Di,2D for all the different ad-
mittance surface vectors contained in (17).

4. Simulation Results
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Figure 4. Convergence curve of the relative misfit function
using wide band and narrow band source signals with no
regularization, Tikhonov regularization using the adjoint
method and using the method of [4].

The sound field of a cubic room of dimensions
4.4× 4.8× 5.3 m3 is first simulated using the FDTD
method for 2 seconds, Nt = 2fs. The sampling fre-
quency is fs = 891 Hz resulting in a spatially uniform
grid of dimension (Nx × Ny × Nz) = (10 × 11 × 12).
Each wall has different admittance surfaces with in-
homogeneities: these are shown in the top row of Fig.
2. A point source excites the system and 6 micro-
phones at fixed random positions are used to obtain
p̃. This p̃ is then used to invert the system and recon-
struct the admittance surfaces as explained in section
3. The optimization procedure is stopped either when
the reduction of the relative misfit function satisfies
f(υk)/f(υ0) < ε = 10−10, corresponding to −100 dB,
or if line search failure occurs. The optimization prob-
lem is initialized for υ = 1/40 for all values of υ. The
sought υ vector is a 2((Nx − 2 + Ny − 2)(Nz − 2) +
(Nx − 2)(Ny − 2)) = 484 dimensional vector. The −2
is due to the fact that the admittances parameters υb
that appear at corners and edges are actually copied
from the neighbor ones belonging to the admittance
surfaces. This is done to enforce continuity between
two or three intersecting admittance surfaces.

Fig. 3 shows the original υ vector and the estimated
one using the adjoint method described in section 3.1

(without regularization) and using the method pre-
sented in [4], where only 6 admittances are used to
model each of the 6 admittance surfaces. The SQP is
solved using damped BFGS for the adjoint method
while GN [7] is used for the 6 admittances case. The
source signal consists of wide band bandpass filtered
white noise, between 20-440 Hz.

It can be noticed that when only 6 decision vari-
ables are used, the estimated admittances are good
averages of the admittances of the corresponding ad-
mittance surfaces. However, as it can be seen in Fig.
4, the method fails to fit the data: the minimization
is stopped due to line search failure after 10 itera-
tions only and relative reduction of the misfit function
reaches only −11 dB. On the other hand the adjoint
method reaches the local minimum in 95 iterations
and a perfect reconstruction is achieved, as can be
seen in Fig. 3.

When a wideband signal is used, the optimization
problem is well-posed and perfect reconstruction is
achieved. This is not the case when a narrowband
signal is used which, for the reasons described in sec-
tion 3.2, would be the case when applying the method
with real measured signals. In the following cases the
source signal consists of bandpass filtered white noise
between 44-88 Hz. If no regularization is applied, look-
ing at the second row of Fig. 2, the estimated admit-
tance surfaces resemble the original ones only par-
tially. Moreover, in Fig. 4, it can be seen how the
convergence rate of the SQP is reduced and a relative
reduction of −64 dB is achieved. Nevertheless, using
Tikhonov regularization, this situation can be slightly
improved: after tuning the regularization parameter
to λx = 2 · 10−3, it can be noticed how in Fig. 2 the
estimated surfaces are indeed smoother and resemble
much more the original ones. The convergence rate is
also improved and the misfit reaches a relative reduc-
tion of −73 dB, as shown in Fig. 4.

5. Conclusions

The adjoint method was used to solve an optimization
problem that can estimate the acoustic impedance
surfaces. The room acoustics were modeled using
the FDTDmethod. Compared to previous works [3,4],
it has been shown that using only one decision vari-
able to model each of the acoustic impedance surfaces
can lead to the failure of the methods of [3, 4]. The
adjoint method enables the usage of large numbers
of decision variables so that the acoustic impedance
surfaces can be accurately estimated even when in-
homogeneities are present. Nevertheless, when nar-
rowband signals are employed in the source distribu-
tion, a condition that is required due to the numeri-
cal errors that the FDTD method introduces at high
frequencies and due to the assumption of frequency-
independent impedances, the problem can become ill-
posed leading to a worse convergence of the optimiza-
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Figure 2. Surface admittances of the six faces of the cuboid room: left wall, right wall, rear wall, front wall, floor and
ceiling. First row figures are the original surface admittances, second and third row is the estimated admittances for
each wall using a narrowband signal as source without regularization and with Tikhonov regularization, respectively. All
admittances are normalized by the maximum value of the original admittance for each wall.
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Figure 3. Plot of the original υ vector and the estimated ones using the adjoint method and the GN method of [4] where
only 6 admittances are used during the inversion procedure. The vertical lines divide the indexes corresponding to the
different admittance surfaces. The original admittance values can also be viewed in 2D on the top row of Fig. 2.

tion method and reduced estimation accuracy. The
usage of Tikhonov regularization can then help to ob-
tain better results. Future work will focus on the us-
age of more effective regularizations and application
of the method using real data.
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