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Summary

A Room Impulse Response (RIR) shows a complex time-frequency structure, due to the presence

of sound re�ections and room resonances at low frequencies. Many acoustic signal enhancement

applications, such as acoustic feedback cancellation, dereverberation and room equalization, require

simple yet accurate models to represent a RIR. Parametric modeling of room acoustics attempts

at approximating the Room Transfer Function (RTF), for given positions of source and receiver

inside a room, by means of rational functions in the z-domain that can be implemented through

digital �lters. However, conventional parametric models, such as all-zero and pole-zero models, have

some limitations. In this paper, a particular �xed-pole In�nite Impulse Response (IIR) �lter based

on Orthonormal Basis Functions (OBFs) is used as an alternative, motivated by its analogy to the

physical de�nition of the RIR as a Green's function of the acoustic wave equation. An accurate

estimation of the model parameters allows arbitrary allocation of the spectral resolution, so that the

room resonances can be described well and a compact representation of a target RIR can be achieved.

The model parameters can be estimated by a scalable matching pursuit algorithm called OBF-MP,

which selects the most prominent resonance at each iteration. A modi�ed version of the algorithm,

called OBF-GMP (Group Matching Pursuit), is introduced for the estimation of a common set of

poles from multiple RIRs measured at di�erent positions inside a room. A new database of RIRs

measured in a rectangular room using a subwoofer is also presented. Simulation results using this

database show that, in comparison to OBF-MP, the OBF-GMP signi�cantly reduces the number of

parameters necessary to represent the RIRs.

PACS no. xx.xx.Nn, xx.xx.Nn

1. Introduction

A Room Impulse Response (RIR) shows a complex
time-frequency structure, due to the presence of room
resonances at low frequencies and the intricate tempo-
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ral structure of sound re�ections. Parametric models
are used in all those acoustic signal enhancement ap-
plications that require the RIR to be represented in a
simple yet accurate way. Examples of these applica-
tions are acoustic feedback cancellation, dereverbera-
tion, and room equalization. In parametric modeling,
a Room Transfer Function (RTF), corresponding to a
Green's function of the acoustic wave equation for spe-
ci�c positions of the loudspeaker and the microphone
inside a room, is represented by means of a rational
function in the z-domain and implemented through
digital �lters. This rational function can be written in
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terms of zeros and poles by computing the complex-
valued roots of the numerator and denominator poly-
nomials, respectively. However, conventional paramet-
ric models, such as all-zero and pole-zero models,
present some limitations. The all-zero model [1] uses a
Finite Impulse Response (FIR) �lter to approximate
the sampled RIR, with the number of parameters cor-
responding to the sample index at which the RIR is
truncated. A zero approximation error is obtained up
to the truncation index, but a large number of pa-
rameters is required in order to capture the resonant
characteristics of the room, especially when the rever-
beration time is high. Moreover, the parameter values
are strongly dependent on the source and receiver po-
sitions. All-pole and pole-zero models are used in an
attempt to overcome these limitations. These models
use pairs of complex-conjugate poles to represent reso-
nances in the RTF. This enables to reduce the number
of parameters and to obtain parameter values less sen-
sitive to changes in the source and receiver positions.
However, a stable all-pole model cannot represent true
delays nor the non-minimum-phase characteristics of
the RTF [1]. Pole-zero models [2], on the other hand,
represent resonances and damping constants by the
poles of the RTF, and anti-resonances and time delays
by its zeros. The Common-Acoustical-Pole and Zero

(CAPZ) model [3] exploits the fact that room reso-
nances are independent of the position of the source
and receiver, but are rather a characteristic of the
room itself. As the name suggests, the RTFs measured
at di�erent positions in the room are parametrized
by a common set of poles, while di�erences between
these responses are described by di�erent sets of ze-
ros. In this way, a more compact representation of a
group of RIRs is obtained. However, since the poles
appear nonlinearly in the pole-zero model, no closed-
form solution to the parameter estimation problem ex-
ists, thus requiring nonlinear optimization techniques,
possibly leading to instability or convergence to local
minima.

An alternative to conventional parametric models
is provided by a particular family of models based on
orthonormal basis functions.Orthonormal Basis Func-

tion (OBF) models [4, 5, 6] de�ne a �xed-pole IIR �l-
ter, which is an orthonormalized parallel connection
of second-order resonators, whose impulse responses
represent damped sinusoids. Then, the RIR approx-
imation is built as a linear superposition of a �nite
number of exponentially decaying sinusoids, whose
frequency and decay rate is determined by the po-
sition of the poles inside the unit circle. The analogy
with the de�nition of the RTF is clear. Each term
of the Green's function corresponds to a resonator
whose impulse response is a sinusoid, oscillating at
a particular resonance frequency and damped with a
particular damping constant [7]. OBF models possess
many other desirable properties, such as orthogonality
and stability. These models are also very �exible, in

the sense that poles can be distributed arbitrarily in-
side the unit circle of the z-plane, thus giving freedom
in the allocation of the spectral resolution. However,
since OBF models are nonlinear in the pole parame-
ters, estimating the poles that provide a good approx-
imation of a given RIR is a nonlinear problem. Non-
linear optimization techniques have been proposed for
the optimization of the poles in di�erent applications,
such as acoustic echo cancellation [8] and loudspeaker
and room modeling [9]. In [10], the nonlinear prob-
lem was avoided by iteratively selecting poles from a
discrete grid using a scalable matching pursuit algo-
rithm, called OBF-MP.

This paper introduces a modi�ed version of the
OBF-MP that aims at estimating a set of poles com-
mon to multiple RIRs measured at di�erent positions
in the same room. It is shown that the modi�ed algo-
rithm, termed here OBF-GMP, approximates the set
of RIRs more accurately, compared to the case when
the poles are estimated individually for each RIR or
when the all-zero model is used, with the same to-
tal number of parameters. Simulations have been per-
formed on a database of RIRs measured at di�erent
positions inside a rectangular room, with a subwoofer
source.

The paper is structured as follows. OBF models are
described in Section 2. In Section 3, the OBF-GMP
algorithm is introduced. Section 4 describes the RIR
database measurements. Simulation results are pre-
sented in Section 5. Section 6 concludes the paper
and indicates possible directions for future work.

2. OBF models

OBF models de�ne an IIR �lter structure that al-
lows to incorporate information about the resonant
and damping behavior of a system. Although these
models are widely used in system identi�cation and
control applications, only a few examples of their use
in room acoustics modeling are known [8, 9, 10, 11].
Under fairly realistic assumptions, a room can be con-
sidered as a causal, stable, and linear system, which
is characterized by a number of room resonances, or
modes. A mode is represented in the z-domain by a
second-order resonator de�ned by a pair of complex-
conjugate poles {pi, p∗i }, with transfer function

Pi(z) =
1

(1− piz−1)(1− p∗i z−1)
(1)

with ∗ indicating complex conjugation. The impulse
response corresponding to the transfer function in (1)
is an exponentially decaying sinusoid, sampled at fre-
quency fs, oscillating at the resonant frequency ωi
and decaying exponentially accordingly to the damp-
ing constant ζi, which also determines the bandwidth
of the resonance. Thus, the angle ϑi = ωi/fs and the
radius ρi = e−ζi/fs of the pole pair {pi, p∗i } = ρie

±jϑi
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Figure 1. The generalized OBF model structure for m
pairs of complex-conjugate poles.

determine the shape of the resonance. For instance,
poles close to the unit circle correspond to room
modes with long decay time and high Q-value. Mul-
tiple resonances can be represented by a parallel con-
nection of second-order resonators. The resulting �l-
ter structure, also called parallel second-order �lter
[12], originates from a partial fraction expansion of
the pole-zero RTF. The terms corresponding to a pair
of complex-conjugate poles {pi, p∗i } are combined to
form a second-order IIR �lter with real-valued coe�-
cients and transfer function as in (1), which produces
a pair of real-valued responses, one being the one-
sample delayed version of the other. The output of
this �lter structure is then a linear combination of
pairs of damped sinusoids, which are used as basis
functions in a linear-in-the-parameters model.
OBF models originate from the orthonormalization

of the parallel second-order �lter, where orthogonal-
ity between any two consecutive basis functions is en-
forced by a second-order all-pass �lter,

Ai(z) =
(z−1 − pi)(z−1 − p∗i )
(1− piz−1)(1− p∗i z−1)

, (2)

in which the zeros in 1/pi and 1/p∗i ensure that the ba-
sis functions de�ned by {pi+1, p

∗
i+1} are orthogonal to

those generated by {pi, p∗i }. The two basis functions
of each pole pair are normalized and made orthogonal
to each other by a pair of orthonormalization �lters
N±i (z). The general �lter structure of an OBF model
is shown in Figure 1 for m pairs of complex-conjugate
poles. Di�erent choices are available for the orthonor-
malization �lters, as explained in [6]. In this work, the
so-called Kautz model [13] is used, where

N±i (z) = |1± pi|
√

1− |pi|2
2

(z−1 ∓ 1). (3)

OBF models present many interesting properties.
Firstly, as opposed to pole-zero models, poles can
be positioned anywhere inside the unit circle with-
out problems of numerical ill-conditioning. This also
allows to allocate a higher spectral resolution in the
frequency range of interest.

Secondly, the OBFs form a complete set in the
Hardy space on the unit disc under the mild assump-
tion that

∑∞
i=1(1 − |pi|) = ∞ [6]. Thus, any stable

linear �lter can be approximated with arbitrary accu-
racy by a linear combination of a certain �nite number
of OBFs, so that OBF models can achieve an accurate
approximation of a RIR with a reduced number of pa-
rameters, compared to conventional models.

A third important property is that OBF mod-
els are linear in the coe�cients θ±i (cfr. Figure 1).
The approximation of a RIR h(n) as a combina-
tion of exponentially decaying sinusoidal responses
ϕ±i (n,pi) consists in estimating the pole parame-
ters pi = {pi, p∗i } and the linear coe�cients θi =
{θ+i , θ

−
i } (where i = 1, . . . ,m) that minimize the dis-

tance between h(n) and the approximated response

ĥ(n,p,θ) for n = 1, . . . , N (with n = t/fs the discrete
time variable). Given the sets p = {p1, . . . ,pm} and
θ = {θ1, . . . ,θm}, the output ĥ(n,p,θ) of an OBF
model for an impulse input signal δ(n) is the linear
combination of the 2m basis functions ϕ±i (n,pi) =

[N±i (z)Pi(z)
∏i−1
j=1Aj(z)]δ(n),

ĥ(n,p,θ) =

m∑
i=1

ϕ+
i (n,pi)θ

+
i +

m∑
i=1

ϕ−i (n,pi)θ
−
i (4)

or ĥ(n,p,θ) = ϕ(n,p)Tθ, where ϕ(n,p) is a vector
containing the impulse responses ϕ±i (n,pi) at time
n. For a �xed set of poles p, the problem of esti-
mating the coe�cients in θ becomes linear and can
be solved in closed form using linear regression. By
stacking all the vectors ϕ(n,p) for n = 1, . . . , N in a
matrix Φ(p), the optimal values in the least-squares
sense for a given data set {h} = {h(n)}Nn=1 are ob-
tained as θ̂ = Φ(p)Th, given that the orthonormality
of the basis functions implies Φ(p)TΦ(p) = IN .

The problem then reduces to the estimation of
the poles, requiring in principle nonlinear estimation
methods. The only known nonlinear method for the
estimation of the poles for RIR approximation using
OBF is the one proposed in [9]. In [11], the nonlinear
problem was avoided by selecting poles from a large
grid of candidate poles using a convex optimization
method. An iterative greedy algorithm, called OBF-
MP, was introduced in [10], which is scalable and nu-
merically well-conditioned. In the following section,
the OBF-MP algorithm is modi�ed in order to jointly
estimate a set of poles, common to multiple RIRs mea-
sured in the same room.

3. OBF-GMP algorithm

The OBF-MP [10] is a matching pursuit algorithm
which at each iteration selects the predictors, i.e.
the pair of basis functions, that are most correlated
with the current residual part of the RIR. The can-
didate predictors are generated based on a grid pg =
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Figure 2. Pole grids using 500 poles, with 50 values for the
angle [1, fs/2−1]Hz and 10 values for the radius [0.75,0.99].
(left) Logarithmic angles. (right) Logarithmic radii.

{p1, . . . , pG} of poles distributed inside the unit cir-
cle. The distribution of the poles in the grid is arbi-
trary and can be dictated by the desire of a higher
spectral resolution in the frequency range of interest
or by other considerations based on prior knowledge
about the acoustics of the room. Two examples are
given in Figure 2. The left example shows a pole grid
with angles distributed logarithmically, which yields a
higher resolution at low frequencies. The right exam-
ple shows a pole grid with radii distributed logarithmi-
cally, which yields a higher resolution close to the unit
circle. At each iteration, the matrix Φk(pg) is built
with the basis functions computed for each pole in
the grid pg and orthogonalized to the basis functions
added in previous iterations. The OBF-MP algorithm
is scalable. In fact, since the resulting �lter structure
is orthogonal by construction, the linear coe�cients
do not have to be recomputed at each iteration. As
a consequence, the model order does not have to be
determined beforehand and more poles can be added
just by running extra iterations. At each iteration,
the approximation error is reduced and the algorithm
can be stopped when the desired degree of accuracy
is obtained. Orthogonality also implies that the lin-
ear coe�cients correspond to the correlation of the
basis functions with the RIR. It follows that no ma-
trix inversion operation is involved in the algorithm,
avoiding any problem of numerical ill-conditioning.
Here, the OBF-MP algorithm is modi�ed in order

to estimate a set of poles which is common to a set
of R RIRs measured in the same room. The mod-
i�ed algorithm, called OBF-GMP (Group Matching
Pursuit), is intended to reduce the number of pa-
rameters necessary to represent the RIRs by identi-
fying the resonant characteristics of the room, com-
mon to all RIRs. The OBF-GMP algorithm, listed
below in details, works as follows. First, a grid pg of
G candidate poles has to be de�ned. Then, the R tar-
get RIRs hr = {hr(n)}Nn=1 are stacked in a matrix
Υ = [h1, . . . ,hR], and the current residual matrix
E0 = [ε10, . . . , ε

R
0 ] is initialized as Υ. At each itera-

tion k, OBF-GMP selects the pair of predictors in Φk

having maximum correlation with the residual signal
vectors in Ek. For a pair of complex-conjugate poles
{pi, p∗i }, the correlation αri with each residual vector

ϕ+
i

ϕ−i

εr

αri

αr
i+

αr
i−

Figure 3. Graphical interpretation of the correlation be-
tween the residual vector ε and the predictors of a pair of
complex-conjugate poles {pi, p∗i }.

Algorithm 1 OBF-GMP algorithm

1: pg = {p1, . . . , pG} . De�ne poles in the pole grid

2: nA = 0, k = 0 . nA: # of selected predictors, k: iterations

3: E0 = Υ, Υ̂0 = 0, . Initialize signal vectors

4: while nA < M do . M : desired model order

5: Build Φk(pg) . Φk: matrix of candidate predictors ϕi

6: j = argmaxi

∑R
r=1 |α

r
i | . Max. correlation with Ek

7: nA = nA + 2 . Update # of selected predictors

8: ε̂rk = [ϕ+
j ϕ
−
j ][α

+
j α
−
j ]

T
. Update approx. residual

9: Êk = [ε̂1k, . . . , ε̂
R
k ] . Current approx. residual matrix

10: Υ̂k+1 = Υ̂k + Êk . Update target approx. matrix

11: Ek+1 = Ek − Êk . Update current residual matrix

12: k = k + 1
13: end while

εrk is chosen as the projection of εrk on the plane de-
�ned by predictors ϕ+

i and ϕ−i (see Figure 3), and is
given by

αri =
√
αri+

2 + αri−
2 =

√
(ϕ+

i

T
εrk)

2 + (ϕ−i
T
εrk)

2.

(5)

For each pair of complex-conjugate poles, the corre-
lations with all the residual vectors in Ek are then
summed together, and the pole pair {pj , p∗j} selected
is the one with index

j = argmax
i

R∑
r=1

|αri |. (6)

Given the orthogonal construction of the basis func-
tions, each approximated residual vector is obtained
as ε̂rk = [ϕ+

j ϕ
−
j ][α

r
j+ α

r
j− ]

T and stacked in the ma-

trix Êk, which is used for updating the current tar-
get approximation matrix Υ̂k = Êk + Υ̂k−1, where
Υ̂ = [ĥ1, . . . , ĥR], and the residual signal matrix
Ek+1 = Ek−Êk. The algorithm terminates when the
desired number M of functions in the basis is reached
or when the approximation error falls below a desired
value.
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Table I. Room speci�cations. Reverberation time calcu-
lated with the backward integration method [18].

Dimensions 6.35 L × 4.09 W × 2.40 H (m)

Reverberation Time T31.5Hz = 1.44s T40Hz = 0.69s

T50Hz = 0.74s T63Hz = 0.53s

T100Hz = 0.47s T125Hz = 0.62s

Figure 4. Sketch of the room at B&O headquarters, Struer,
Denmark.

4. RIR database

The RIR measurements used in the simulations were
performed in an unoccupied, standard domestic lis-
tening room, sketched in Figure 4, based at Bang
& Olufsen headquarters in Struer, Denmark. When
furnished, the room complies with IEC 60268-13
[14] with RT(500Hz−1KHz) = 0.35 s. The room com-
prises of wooden �oor, wooden false ceiling �lled with
Rockwool®, and lightly plastered painted walls with
high-frequency absorbing panels on the side walls.
During the measurements, the room was emptied, ex-
cept for 8 acoustic wooden panels (0.5×0.5×0.025m)
and 2 Helmholtz absorbers tuned at 200-300Hz. The
room dimensions and the values of the reverbera-
tion time are given in Table I. RIR measurements
were obtained using the logarithmic sine-sweep tech-
nique [15] with a sampling rate of 48 kHz. The sweeps
were recorded with a B&K 4939 1/4" microphone
and B&K 2669 preampli�er, connected to an au-
dio interface (RME UCX) and a laptop computer.
Recordings of 3 s sine sweeps (0.1Hz-1KHz) produced
by a custom Genelec 1094A subwoofer (12-150Hz,
±3 dB) were completed for 24 source-microphone po-
sitions (see Table II), in conformity with the guide-
lines in ISO 3382-1,2 [16, 17] for precision measure-
ments. The RIR database measurements are avail-
able for download at http://www.dreams-itn.eu/

index.php/dissemination/downloads/subrir.

5. Simulation Results

The simulations results presented here aim at com-
paring the OBF-GMP algorithm with OBF-MP and
the all-zero modeling. The obtained models are com-
pared in terms of their ability to approximate a set of

Table II. Microphone and speaker positions. Speaker Po-
sition indicates the center of the transducer.

Mic X Y Z Src X Y Z

1 1.12 1.56 1.50 1 3.84 3.84 0.53

2 0.77 4.04 1.80 2 2.90 0.80 0.53

3 2.04 4.47 0.90 3 3.63 5.83 0.53

4 1.62 5.32 0.60 4 2.35 4.55 1.13

5 3.05 3.06 1.50

6 3.09 5.07 1.00

0 200 400 600 800
−60

−40

−20

0

C/R

h
N
M
S
E
(d
B
)

Figure 5. The average NMSE w.r.t. the number of model
parameters C per RIR. The average NMSE in (7) for
the entire time-response. All-Zero model ( ), OBF-GMP
model ( ), and OBF-MP model ( ).

R RIRs for a given number of parameters. For the all-
zero modeling, the number of parameters is R times
the number of taps used in the FIR �lter for each re-
sponse. For the OBF models (see Figure 1), the num-
ber of parameters is the number of poles m plus the
number of linear coe�cients 2m, which sum up to 3m
coe�cients. When estimating m poles individually for
each RIR with OBF-MP, the total number of param-
eters is 3mR. In case m poles are estimated jointly for
all RIRs with OBF-GMP, only one common set of m
poles is necessary, and the total number of parameters
becomes m+ 2mR.
The di�erent models were tested on R = 22 RIRs

taken from the database introduced in Section 4. Each
RIR was downsampled to fs = 800Hz and truncated
to N = 4000 samples from the �rst strong peak, se-
lected as its starting point. The OBF-GMP pole grid
usedG = 1000 poles with 20 di�erent radii distributed
logarithmically from 0.75 to 0.99 and with 50 di�er-
ent angles placed linearly in the range [1, fs/2− 1]Hz
(right plot of Figure 2). The error measure used to
compare the performance of di�erent models with the
same number of parameters is the Normalized Mean-
Square-Error (NMSE) in the time domain, averaged
over all RIRs, given by

hNMSE = 10 log10
1

R

R∑
r=1

‖hr − ĥr‖22
‖hr‖22

. (7)

Figure 5 shows the average NMSE produced by the
OBF models using the two algorithms and by the all-
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zero modeling, for the same total number of model
parameters per RIR. It can be seen that the OBF
models provide a better approximation compared to
the all-zero model. Moreover, there is a signi�cant re-
duction in the approximation error when OBF-GMP
is used instead of OBF-MP, mainly resulting from the
use of a larger number of poles (about 30% more). The
fact that this improvement is not noticeable when the
number of parameters is small can be explained by
observing that OBF-MP tends to select poles closer
to the unit circle, which approximate better the main
strong resonances of the target magnitude response
with a small number of poles.

6. Conclusions and Future Work

OBF models can be successfully used to approximate
a RIR as a linear combination of exponentially decay-
ing sinusoids, motivated by the physical de�nition of
the RIR. In this paper, the OBF-MP algorithm pro-
posed in [10] for the estimation of the poles, was mod-
i�ed in order to approximate multiple RIRs jointly.
The idea is also exploited in the CAPZ model, with
the di�erence that in the CAPZ model the estimation
of the parameters is not scalable, thus requiring the
order of the model to be determined in advance. Simu-
lation results on a set of low-frequency RIRs measured
in a rectangular room show that the OBF-GMP al-
lows to reduce the number of parameters, obtaining a
more compact representation of multiple RIRs.

Future research will further investigate the topic in
the pursuit of a better understanding of the behavior
of the OBF-GMP algorithm w.r.t. di�erent numbers
of RIRs or di�erent con�gurations of the pole grid,
also including a comparison with the CAPZ model-
ing. Moreover, the choice of the pole grid could be
informed by prior knowledge about the characteris-
tics of the room.
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