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Summary 
Vibration damping is an important consideration in the design of fibre reinforced composite 
structures as these stiff, lightweight materials often have undesirable vibration transmission 
characteristics. If not properly addressed, high vibration levels can propagate throughout a 
structure and result in undesirable conditions for occupants and equipment. It is possible to 
incorporate viscoelastic damping layers into a composite laminate's construction to achieve 
improved damping properties. Inclusion of embedded viscoelastic layers results in a constrained 
layer damping configuration, where the damping capacity is governed by the shear strain in the 
damping layer.  Deliberate asymmetry in orthotropic layers surrounding a viscoelastic core can be 
used to induce coupling between normal and shear effects. A finite element model is presented to 
investigate the effect of patterned fibre constraining layers on the damping performance of these 
constrained layer materials. 

PACS no. 43.40.+s, 46.40.Ff, 02.70.Dh 
 
1. Introduction1 

The use of composite materials is becoming 
increasingly prevalent in a wide range of 
industries. Many of the application areas for such 
materials are in structures and environments where 
high levels of vibration are also present.  
 
A method of increasing the damping 
characteristics of composite constructions is 
through inclusion of viscoelastic damping layers 
within a laminate lay-up. The damping 
performance of these constructions is influenced 
by the shear strains within the viscoelastic layers 
in the same way as constrained layer damping 
(CLD) surface treatments. Use of asymmetric 
orthotropic layers surrounding a viscoelastic core 
produces coupling between extension and twist 
behaviours. This coupling can be used to induce 
in-plane transverse shear strains. Previous research 
into the use of 'zig-zag' and continuous sinusoidal 
fibre patterns in such a configuration found that 
the damping performance of these composite 
damping materials was affected by the fibre 
                                                      

 

pattern wavelength and maximum fibre angle [1-
4]. The pattern wavelength tended to shift the 
frequency at which maximum damping occurred, 
while the maximum fibre angle shifted the 
maximum damping value achieved. Previous 
research considered simple constant sine wave 
patterns. An example is shown in Figure 1. 
 

Figure 1. Simple sinusoidal fibre pattern. 
 
It is of interest to explore what effect more 
complex fibre patterns have on the damping 
spectrum of composite sandwich arrangements 
with a viscoelastic core material. An example of a 
more complex pattern is shown in Figure 2. 
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Figure 2. Complex sinusoidal fibre pattern. 
 
The proposed composite damping treatment, 
termed complex patterned fibre constrained layer 
damping (CPF-CLD), presents fabrication 
challenges which prohibit economic production of 
large volumes of test specimens. Hence, finite 
element analysis (FEA) is an excellent technique 
for an investigation of this composite damping 
material. 
 
This paper presents the development of a finite 
element model (FEM) in MATLAB to investigate 
the modal damping behaviour of three-layer CPF-
CLD beams. 
 
 
2. Key Considerations 

The CPF-CLD material varies from conventional 
composite laminate constructions in several 
significant areas: 

 Structural properties vary along the length 
of the sample depending on the local fibre 
angle, 

 In-plane transverse shear strains are 
present due to the fibre angle phase shift 
between layers, 

 The mid ply is viscoelastic with damping 
and stiffness properties that vary 
significantly with excitation frequency, 

 The fibre-reinforced polymer (FRP) face 
sheets provide some material damping to 
the system and will also exhibit frequency 
dependent material properties. 

 
Element types, material models and other analysis 
parameters must be correctly selected in order to 
properly reflect these characteristics in the model. 
 
 

3. Element Type 

Solid elements were selected for the model to 
account for transverse in-plane shear effects. In 
order to prevent shear locking, quadratic 
interpolation functions were used in the plane of 
the laminate and linear interpolation functions 
through the thickness. This configuration was 
achieved using 16-node brick elements. The 'brick-
16' arrangement is shown in Figure 3. 

Figure 3. ‘Brick-16’ solid element. 
 
Three of these 'Brick-16' elements were stacked to 
represent the three layers present in the laminate 
construction. This produced a layered brick with 
32 nodes, shown in Figure 4. 

Figure 4. Stacked 'Brick-16' solid elements. 
 
Isoparametric element formulation was used to 
facilitate the solid elements taking non-rectangular 
shapes due to deformation. This was achieved by 
transforming a deformed ‘brick-16’ element into a 
coordinate system where the element became a 
cube. The new element coordinate system was 
defined by directions , , and  which mapped to 
the global coordinate system directions x, y, and z 
respectively. Element edge lengths in the element 
coordinate system were all set to 2, with the origin 
located at the centre of each element. Thus, nodes 
were located at values of -1, 0, +1 in the  and  
directions, and at -1 and +1 in the  direction. 
 
Quadratic interpolation functions were used in the 
laminate plane, and linear interpolation functions 
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were used in the thickness direction. This resulted 
in a 16 x 1 interpolation function vector of the 
form: 

. (1) 

Each node had three translational degrees of 
freedom. Interpolation functions were applied to 
each degree of freedom resulting in a 3 x 48 
interpolation function matrix of the form: 
 

. (2) 

 
The displacements within each ‘brick-16’ element 
could then be defined by: 
 

 ,    (3) 

where nodal displacements were defined as: 
 

. (4) 
 
Transformation between the element coordinate 
system and the global coordinate system was 
achieved using the Jacobian matrix [J]. This matrix 
was used to map the physical lengths ,  and 

 to the reference lengths ,  and . The 
Jacobian matrix was of the form: 
 

,   (5) 

where comma separated subscripts indicate partial 
derivatives in that dimension. 
 
The element stiffness matrix, , was defined by: 
 

 ,   (6) 

where  was the element strain matrix,  was 
the complex material constitutive matrix, and  
was the determinant of the Jacobian matrix. The 6 
x 48 element strain matrix was defined as: 
 

 . (7) 

The material constitutive matrix  was 
dependent on the material properties of the 
element under consideration and the orientation of 
the material within the element. The constitutive 
matrix was also complex due to the complex 
stiffness values used to account for the damping 
within the model. Material property 
transformations were applied to  for the outer 
two plies in order to account for the varying fibre 
orientation along the length of the structure 
studied. 
 
The element mass matrix, , was defined by: 
 

 ,   (8) 

where   was the density of the material within the 
element. As the element mass matrix was 
calculated using the same interpolation functions 
as used in the computation of the element stiffness 
matrix, the mass matrix was classed as 
‘consistent’. 
 
An explicit element damping matrix was not 
required as the damping behaviour was 
incorporated by the imaginary terms of . 
 
The integration required to evaluate  and  
was performed using Gauss Quadrature [5, 6]. As 
quadratic interpolation functions were used in the 
laminate plane and linear functions in the thickness 
direction, three Gauss points were used in the  
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and  directions, and two Gauss points in the  
direction. 
 
4. Material Models 

Calculation of the element stiffness matrices 
required the use of appropriate material models for 
the constituent materials. The fibre layers were 
modelled as a transversely isotropic material while 
the damping layer was assumed to be isotropic. 
The damping properties for both of these material 
types were accounted for using complex 
constitutive matrices . The complexity of the 
stiffness matrices was a result of complex material 
properties within the constitutive equations for 
each of the materials. Many of these properties 
were also frequency dependent and models for the 
frequency dependent behaviour were required in 
order to produce a useful finite element model. 
 
In equation 6, the complex 6 x 6 material 
constitutive matrix  was used to derive the 48 
x 48 stiffness matrix  for each ‘brick-16’ 
element. For the isotropic viscoelastic damping 
material (VEM), the material constitutive matrix 
was defined using the shear modulus version of 
Hooke's Law for an isotropic material in three 
dimensions. Damping was accounted for using 
complex shear modulus: 
 

 ,   (9) 

where, GVEM is the storage modulus of the VEM 
when acting in shear, and ηVEM is the damping loss 
factor. Both of these properties were functions of 
frequency. 
 
The element stiffness matrices for the fibre layers 
were calculated using the general orthotropic 
material constitutive equations with the 2-3 (y-z) 
plane as a plane of symmetry. Transformation of 
the material constitutive matrix was required as the 
fibre orientation within each element was 
dependent upon where the element lay along the 
fibre pattern. The resulting complex compliance 
matrix was of the form: 
 

, (10) 

where, 
 
  ,               (11) 

.               (12) 

The material constitutive matrix could then be 
defined by: 
 

 .               (13) 

The extensional storage moduli (E1 and E2) and 
their associated loss factors (η1 and η2), along with 
the shear storage moduli (G12 and G23) and their 
associated loss factors (η12 and η23), were functions 
of frequency. As with the frequency dependent 
properties of the VEM, the frequency dependence 
of these FRP properties were measured using 
dynamic experiments and added to the finite 
element model. 
 
A transformation of the FRP material constitutive 
matrix was performed to account for the local fibre 
angle within each element. This produced the 
required constitutive equation, , for calculation 
of the element stiffness matrix: 
 

,              (14) 

where the transformation matrix [T] was defined, 
using m = cos(θ) and n = sin(θ), as: 
 

 .    (15) 
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5. Iterative Damping Analysis 

The modal damping performance and deformation 
behaviour of the model was desired. As the 
constituent materials properties within the model 
were functions of frequency, an iterative method 
was required to solve the model behaviour for each 
mode of interest. The equation of motion of the 
modelled system was: 
 

.              (16) 

The forcing vector, displacement vector and 
acceleration vector could be expressed in the 
frequency domain using a Laplace transformation 
and the general solution s = iω. This resulted in: 
 

 .             (17) 

In the case of unforced (modal) vibration, equation 
17 simplified to: 
 

.              (18) 

Alternatively, equation 18 could be displayed as 
the general linear eigenproblem, with complex 
eigenvectors and eigenvalues resulting from the 
complex stiffness matrix: 
 

,               (19) 

where [Φ*] is a matrix of the n eigenvectors, {φ*}, 
of the system and [Λ*] is a diagonal matrix of the n 
eigenvalues, λ*, of the system, where n is the total 
degrees of freedom of the system. 
 
Solution of this eigenproblem with the MATLAB 
function eigs yielded the first p eigenvectors and 
eigenvalues of the system: 
 

.              (20) 

The Iterative Complex Eigensolution (ICE) 
algorithm [7] was used to calculate the modal 
frequencies and associated damping loss factors. 
The modal frequency and damping loss factor of 
mode r were defined by: 
 

,                 (21) 

 .                (22) 

The iterative process used to determine the loss 
factor of each mode of interest is shown in Figure 
5. The convergence criteria ∆max was set as 0.01%. 

Figure 5. Iterative algorithm to determine modal 
damping. 
 
6. Fibre Pattern Comparison 

Four fibre patterns were compared to the modal 
damping behaviour produced by unidirectional 
fibres at 0° orientation. Two fibre pattern types 
were selected, superposition of two sine waves (λ1 

+ λ2), and swept sine waves (λ1  λ2), where λ 

designated the fibre wavelengths used in the 
pattern. The specifications of the patterns are 
shown in Table I. 
 
Table I. Fibre pattern details. 

 Pattern 
1 

Pattern 
2 

Pattern 
3 

Pattern 
4 

Waveform λ1 + λ2 λ1 + λ2 λ1  λ2 λ1  λ2 
λ1 (mm) 125 125 125 125 
λ2 (mm) 50 75 50 75 
θmax (°) 30 30 30 30 
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Figure 6 shows the modal damping performance of 
the four fibre patterns and the unidirectional layup 
(UD0) for the first four bending modes of a freely 
suspended beam. 

Figure 6. Damping comparison of the first four bending 
modes. 
 
The results produced by Pattern 3 are obscured by 
those produced by pattern 4. The trend observed 
from these results indicated that patterns with 
lower absolute mean fibre angle (the mean 
directional stiffness of the pattern) produced 
increased damping performance. In the case of 
beams, this indicated that the additional transverse 
shear strains produced by the patterned fibre layers 
reduced the stiffness in the length direction of the 
beam with a net result in reduced modal 
frequencies and damping values. 
  
Test specimens for the four fibre patterns were 
fabricated and tested using the materials and 
methods detailed in [8]. The modal damping 
results produced by the finite element model 
typically fell within one standard deviation of the 
measured experimental values.  
 
7. Further Analyses 

The displacement fields defined by the 
eigenvectors could be used to visualise the strain 
fields present within the modelled structures. As 
the eigenvectors only provided relative motion, the 
strain fields were normalised by the largest strain 
value to obtain a clearer image of the strain 
behaviour. Figure 7 shows the shear strains present 
within the viscoelastic core for the first bending 
mode of a freely suspended beam using Pattern 2 
outer plies. 

Figure 7. Shear strains within the VEM for Pattern 
2 in bending mode 1. 
 
8. Conclusions 

The model presented in this paper is capable of 
modelling the modal damping performance of 
three layer planar composite materials with a 
viscoelastic core layer surrounded by patterned 
fibre layers. The frequency dependence of material 
properties are accounted for and an iterative 
solution method is used to ensure the correct 
material properties are used for each mode of 
interest.  
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