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Summary

This work is concerned with the numerical simulation of sound pressure field in three-dimensional
cavities in which absorbing materials are present. Standard techniques such as the Finite Element
Method are known to be extremely demanding computationally when the frequency increases and
thus limited to low frequency applications. To alleviate these difficulties, an alternative formulation
based on the Partition of Unity Finite Element Method is proposed. The method involves enriching
the approximation finite element space by expanding the acoustic pressure in a set of plane waves
propagating in various directions over the unit sphere. Particular attention is devoted to the fast and
accurate computation of highly oscillating integrals which is required by the method. Convergence
studies show that these wave finite elements allow to capture accurately the wave field with a number
of degrees of freedom that only grows quadratically with the frequency yielding drastic data reduction
compared to classical FEM. Results of practical interest are shown for the case of a sound source
placed in a reverberation room with absorbing materials.
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1. Introduction

Traditional Finite Element Method (FEM) is not ef-
ficient enough to solve medium and high frequency
acoustic waves because of excessive demands involv-
ing heavy computational cost. This limitation results
from the thumb rule which indicates that at least 10
nodal points per wavelength are required with clas-
sical FEM. Therefore, new deterministic prediction
techniques have been developed in the recent years
to overcome this limitation, most of them are imple-
mented by expanding the dynamic field variable with
a set of oscillatory wave functions which are the ana-
lytical solutions to the governing equation of the prob-
lem. These techniques include the Partition of Unity
Finite Element Method (PUFEM) [1], the Ultra-Weak
formulation [2], Wave-Based Methods [3], the Discon-
tinuous Galerkin Method [4] and the Variational The-
ory of Complex Rays [5]. All of these methods can
offer a drastic reduction in degrees of freedom com-
pared with conventional FEM. Among them, PUFEM
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offers the advantage of being very similar to the FEM,
can be easily adapted to any FEM mesh and has been
successfully used to solve acoustic wave scattering in 2
and 3 dimensions [6] [7], flow acoustic and other wave
propagation problems [8] [9] [10].

Although these prediction techniques allows a huge
reduction in the number of degrees of freedom, the
computation of element matrices requires the integra-
tion of highly oscillatory functions leading to expen-
sive computational costs due to the need of a too large
number of integration points. These limitations can
be prohibitive especially for 3D simulations. There-
fore, several new integration schemes were developed
to improve competitiveness of the PUFEM. Sugimoto
[11], Bettess [12] and Gordon [13] used the diver-
gence theorem to obtain the exact integration over
a polygon. Gabard [14] extended this method to vol-
ume integrals. El Kacimi [15] presented a similar ap-
proach in the evaluation of element matrices for elas-
tic wave scattering problems. However, to the authors’
knowledge no results appear in the literature regard-
ing appropriate integration techniques for the compu-
tation of PUFEM element matrices in 3-dimensional
domains.
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In this paper, a new exact integration scheme over a
tetrahedron element is proposed and some numerical
aspects of this scheme are investigated. The deriva-
tion of analytical integration of element matrices is
explained. Through intensive convergence tests, it is
shown that the PUFEM elements allow to capture
accurately the wave field with a number of degrees of
freedom that only grows quadratically with the fre-
quency, yielding drastic data reduction compared to
classical FEM. Results of practical interest are shown
for the case of a sound source placed in a reverbera-
tion room with absorbing materials on the wall.

2. PUFEM for 3D acoustic waves

The wave governing equation for the acoustic pressure
p is the classical Helmholtz equation,

Ap+E*p=0 (1)

where k = w/c is the wavenumber and w is the har-
monic frequency In order to get the numerical solution
to this problem, we need multiply equation (1) with
a weighting function dp, so that the weak form of the
Helmholtz equation can be written as,

/ (Vp -V(op) — kzpép) dQ—/ @5pdf‘ =0(2)
Q T 8n

where 0 is a closed three-dimensional domain with
boundary I'. The PUFEM consists in expanding the
pressure using a set of plane waves to enrich the clas-
sical finite element approximation space as follows:

4 Qj
p(m) = Z Nj Z qu exp(ik’djq . m) (3)
7j=1 q=1

where dj;, denote the directional vectors of the plane
waves basis attached to node j. The distribution of
plane waves directions is based on the equal spacing
of points on the unit sphere [16] as shown in Figure 1.
Coefficients Aj, represent the amplitude of each plane
wave and are the unknowns of the problem.

After substitution of the plane wave expansion in
the weak formulation, we find that PUFEM matrix
coefficients are obtained from the sum of 4 integrals
over an element €),:

I= —m2(1+d'~d”)/ﬂ NN, dQ
+ikd' - VN, /Q N,y¢dQ

+ikd" - VN, /Q Ny dQ
+VNP-VNq/Qe¢dQ,

where we put ¢ = exp(ikd-x) with k = k|d’'+d"| and
d=(d +d")/|d + d"|. Here symbols ' and " refers
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Figure 1. End points distribution of directional vectors of
plane waves (taken from [16]).

Figure 2. 3D coordinates systems in real and local element,
space.

to trial and test functions. The next step is to take
advantage of the fact that shape functions are linear
over the tetrahedron finite element. This signifies that,
application of the Green theorem on volume integrals
gives the following result

/ F¢:—/ (eFd+ VEF + S AFd) -n¢
Qe 0.

where € = i/k and F stands for a constant, a linear or
a quadratic function with respect to local coordinates
x = x((1, (2, (3) (the linear mapping between real and
local space is illustrated in Fig. 2). Following the same
strategy, the surface integral can be further reduced to
line integrals which can be reduced to a closed form
expression. Finally, we arrive at analytical formulas
requiring only the information about the 4 vertices
of the tetrahedron element, thus avoiding the use of
high-order numerical quadrature.

3. Convergence test

The purpose of this section is to assess the numerical
performances of the proposed technique in terms of
accuracy and complexity. Here the idea is test the
converge of the method towards an exact solution
without modifying the coarse PUFEM mesh. In other



EuroNoise 2015
31 May - 3 June, Maastricht

words we perform a @Q-refinement as opposed to a h-
refinement. Through numerous numerical tests, it was
observed the PUFEM accuracy depends mainly on 2
parameters: the element size, call it h; defined as the
longest edge attached to node j and the number of
wavelengths spanned by the element. In the follow-
ing, we may assume that the number of plane waves
attached to each node should vary quadratically like
(kh;)? so we put

Q; ~ C(kh;)>. (5)

Coefficient C' can also be viewed as a function of kh;
and it must be adjusted according to the configura-
tion and expected accuracy. The behavior of C' with
respect to the nondimensional frequency kh; can be
found by choosing an artificial wave propagation prob-
lem for which an exact solution is easily available. To
do this, we consider an arbitrary incident plane wave
propagating inside a single isosceles tetrahedron (all
edges of the tetrahedron are equal). To be fair in our
convergence test, the incident plane wave direction is
always chosen as far as possible from the plane waves
directions of the PUFEM basis, in order to avoid pe-
culiar behaviors. For the sake of illustration, Figure
3 illustrates the PUFEM solution for kh = 50 and
@ = 276 plane wave basis are used per node (in to-
tal 4 x 276 = 1104 are used to simulate the arbitrary
plane wave in the element). Figure 4 shows the rele-
vant curves describing the convergence behaviors. The
convergence rate for the tetrahedron was evaluated for
two expected accuracy of 0.1% and 1%. Another simi-
lar scenario was tested with a regular cube comprising
24 elements. Here only the curve associated with 1%
error accuracy is shown. For this specific case, it turns
out that more plane waves are required (per node) in
order to reach 1% accuracy compared with the tetra-
hedron case. This series of test show that coefficient
C' generally lies in the interval [0.1-0.7] as long as the
frequency is sufficiently high compared to the element
length and clearly the scenario kh; < 5 should be
avoided when using the PUFEM technology. On the
other hand, high frequency calculations allows a sub-
stantial reduction in the number of degrees of freedom
compared to classical FEM (for which it should grow
at least cubically with frequency) as all curves show
similar asymptotic behavior with Q; ~ 0.1(kh;)?.

4. Numerical examples

The regular cube of size 2 x 2 x 2 with 24 elements
(14 nodes) is now chosen to simulate and analyze two
acoustical problems.

4.1. Response to a prescribed velocity

For the first model, the boundary condition dp/dn =
1 is applied on a single triangular surface element as
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An incident
plane wave

Figure 3. The model (left), PUFEM solution (right), kh =
50 and =276, CPU time < 3min Matlab.
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Figure 4. Coefficient C' and kh; for 1% and 0.1% error
range

shown in Figure 5. Because there is no analytical solu-
tion to this problem, the quality of the solution can be
assessed by looking at the imaginary part of the nu-
merical solution since the exact solution is expected to
be purely real. PUFEM results are displayed in Figure
5. The wave number k is equal to 30 so this is a rela-
tively high frequency problem. We may note that the
number of plane waves attached to each node of the
cube (here Q—958) is automaticaly selected follow-
ing criteria (5) as discussed in the previous section. It
was checked that the magnitude of the imaginary part
does not exceed 1072 which is acceptable. Finally,
around 15,000 dofs are used here whereas it is esti-
mated that 1000n3 dofs should be used for the same
problem using classical piecewise linear or quadratic
interpolation. Taking for instance n) = 15 degrees of
freedom per wavelengths leads to an estimate of more
than two millions FE nodes.

4.2. Response to a point source

The second example concerns the simulation of a
sound field caused by a monopole source placed in
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applied velocity

Real part of Fluid Pressure obtained K= 30 DOF=958

Figure 5. High frequency wave propagating problem: the model (left), PUFEM solution (right), ¥ = 10 and Q=958.

a closed cavity. Here the wave equation is modified to
account for the Dirac function on the right-hand side:

Ap + k*p = Ad(x — x0) (6)

where A is the amplitude of the source and xq is the
source position, here we put @y = (0.9,0.8, 1) which is
close to the center of the cavity. The analytical solu-
tions to this problem is available, and this will serve to
measure the accuracy of the PUFEM results. Figure 6
shows some computed results at k& = 15 using Q—278
and @QQ—417 plane waves directions. As expected re-
sults become more accurate using more plane waves
and choosing Q=417 provides acceptable results for
engineering accuracy. In this scenario, the exact so-
lution is singular and the number of wave directions
has to be chosen sufficiently high to ensure that re-
sults have converged at least at some distance from
the source.

5. Conclusions

In this paper, an exact integration scheme is presented
for the fast and accurate computation of highly oscil-
latory integrals arising from the PUFEM matrix co-
efficients associated with the 3D Helmholtz equation.
It’s shown that, through successive use of Green’s the-
orem, volume integrals have closed-form expressions
in which no integration is involved. Through conver-
gence tests, a criteria for selecting the number of plane
waves is proposed. It is shown that this number only
grows quadratically with the frequency thus leading
to a drastic reduction in the total number of degrees of
freedoms in comparison to classical FEM. The method
has been verified for two numerical examples. In both
cases, the method is shown to converge to the ex-
act solution. For the cavity problem with a monopole
source located inside, the singular nature of the so-
lution implies that more plane waves are required to
attain acceptable results.
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Figure 6. Pressure response in the cavity due to a point source: (a) the building model, (b) analytical solution at k =
15, (c¢) PUFEM solution with Q—278, (d) PUFEM solution with Q—417.
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