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Summary
In this paper, a bootstrap evaluation of the confidence intervals in reverberation time measurement
is presented and discussed. The confidence interval of a data set is usually calculated assuming the
population is normally distributed. In the literature published in the recent years it has been shown
and discussed how either multimodal or asymmetric probability density functions are possible in
reverberation time measurements at low frequencies. As the assumption of normal distribution is not
valid for reverberation time measurements at low frequencies, a bootstrap based method to obtain
confidence intervals for reverberation time measurements will be described. The proposed method
is validated by simulations and by using an extensive measurement dataset of a room. Reasonably
good confidence levels are reached in both cases.

PACS no. 43.58.+z, 43.60.+d

1. Introduction

In the present paper we describe a Bootstrap ap-
proach to evaluate confidence intervals of reverber-
ation time measurements. There are not too many
references on the evaluation of the uncertainty of re-
verberation time measurements. The standard ISO
3382, parts 1 and 2, includes several equations for
calculating the standard deviation of measurement of
the reverberation time in rooms, based on papers pub-
lished by Davy in 1979 and 1980 [1, 2]. Later, in 1988,
Davy proposed some empirical corrections to these ex-
pressions for low frequency measurements [3]. Hagber
and Thorsson, [4], during the process of evaluation
of uncertainties in standard impact sound measure-
ments, reported an asymmetric distribution functions
of the reverberation time measurements at low fre-
quencies. The behavior of the distribution functions
given by the measurements performed by these au-
thors matches the description of the distribution func-
tions given by Cabo, Sobreira and Jacobsen [5], where
it is shown how not only asymmetrical but also mul-
timodal distribution functions appear in practice. In
a previous job, the description of the error introduced
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by the filter due to its group delay is fully described
in Sobreira, Cabo and Jacobsen [6]. Provided the dis-
tribution function at low frequencies can be rather
complex, the usual assumptions (tendency to normal
distributions of the measurement data set) to estimate
the uncertainty of the measurement cannot be used at
low frequencies. Even the use of Monte Carlo Meth-
ods, hereinafter MCM, requires the assumption that
the data set has a known distribution, and it should
be clear that it is not the case in reverberation time
measurement at low frequencies. It should be noted
that the meaning of low frequencies range is related
to the concept of low modal density where depending
on the characteristics of the system under test, the
distribution function may become more or less com-
plex.

A common problem in applied statistics is the esti-
mation of an unknown parameter and often it is useful
to get an idea of how accurate its estimator is (T̂60
in this specific case). Some decades ago, the effort
was focused in developing complex (and more often
oversimplified) theoretical derivations of the standard
error or the variance for most estimators (as those
shown in [1, 7]). Nowadays, high-speed computers are
accessible for most of the technicians and engineers.
Therefore, modern and computer-intensive statistical
techniques could be used in order to avoid oversimpli-
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fied theoretical derivations that sometimes do not fit
experimental results. One of this modern statistical
methods is the bootstrap, proposed by Efron in 1979
[8]. A good reference to introduce the bootstrap tech-
nique to the reader is [9]. Furthermore, the reader can
find different methods to obtain confidence intervals
in [10] and [11].

2. Methodolody

In practice, the problem is to evaluate the confidence
intervals in reverberation time measurements when
only a few samples are available and the distribution
function of the measurement data is unknown. A pre-
vious study with simulated acoustic decays would be
useful to obtain large amounts of synthetic acoustic
decays simulating different kind of rooms. In order
to evaluate and validate the method, the following
methodology has been followed:
1. A analytical method to generate acoustic decays

has been developed. The energy decay model gener-
ated will serve as model function for a Monte Carlo
simulation.

2. The Monte Carlo simulation is used to generate a
large number of acoustic decays for each modelled
room. Different rooms can also be modelled.

3. Bootstrap can be used to estimate confidence inter-
vals using subsets of the acoustic decays generated
using the MCM.

4. The method is also applied to evaluate confidence
levels with real data.

2.1. The energy decay model

The model defined by Kob and Vörlander [12] and
used by Sobreira, Cabo and Jacobsen [6] has been
taken as the starting point. The acoustic decay in a
resonant system can be modelled as the superposition
of several decaying resonant modes [13]. This tran-
sient can be modeled as a weighted sum of decaying
cosines, being the weights given by the spatial distri-
bution of the energy per mode. A set of box-shaped
rooms are used, with the aim of simplifying the simu-
lations. Thus, given the dimensions and acoustic prop-
erties of the walls, it is possible to simulate the energy
decay process of every position of the room by using
the model shown in Eq. (1),

p(x, y, z) =
∑

i=1,2···∞
Ai(x, y, z) cos(2πfi+φi)e

−βit(1)

where φi describes the phase of the modes and
Ai(x, y, z) denotes the amplitude of the modes at the
measurement point and t = 0, being βi = −3ln10

Ti
the

temporal absorption coefficient of every mode. This
model of the temporal absorption coefficient allows
us to set the exponential decay of each mode with an
attenuation of 60 dB when t = Ti (so Ti is the rever-
beration time associated with a given normal mode

with resonance frequency fi). The simulations can be
notably simplified if the excitation source is placed
in a corner of a box-shaped room and a flat response
over the frequency range of interest is assumed. In the
case of box-shaped rooms, the natural frequencies can
be calculated from Eq. (2).

fi = fl,m,n =
c

2

√(
l

Lx

)2

+

(
m

Ly

)2

+
( n
Lz

)2
, (2)

∀l,m, n = 0, 1, · · · ,∞,
where Lx,Ly,Lz are the room dimensions along the
x,y and z axes and c the speed of sound. Thus, it
may be considered that all the natural modes of the
room are excited by the impulsive source. Under this
assumption, considering that every mode is excited
with the same amplitude, Ai(x, y, z) = Al,n,m(x, y, z)
depends only on the position of every microphone.
Thereby, if klx, kly and klz are the wave numbers
along the x,y and z directions, the amplitude of every
natural mode for every microphone position can be
described by Eq. (3).

Al,m,n(x, y, z) = cos(klxx) cos(kmyy) cos(knzz) (3)

Note that this model can be a good approximation of
the eigenfunctions for a box-shaped room with hard
walls, where the reactive part of the impedance of the
walls is negligible. In that case the position of the
nodes are not notably affected by the absorption of
the walls [13].

2.2. The Monte Carlo simulations

The application of the MCM to evaluate of the uncer-
tainty in measurements is the aim of the first supple-
ment of the Guide to the Expression of Uncertainty
in Measurement [14], which is known as the GUM.
The MCM in acoustics is described in detail and ap-
plied to different problems by Rodriguez-Molares [15].
The methodology followed in this work to perform the
MCM calculations to evaluate the distribution func-
tions of acoustic decay measurements is described by
Cabo, Sobreira and Jacobsen [5]. In the formulation
stage of the MCM, the distribution function of ev-
ery input quantity needs to be defined. Since the goal
is to simulate a reverberation time measurement per-
formed by applying the standard ISO 3382, there are
some limitations regarding the microphone positions:
the minimum distance between microphones must be
λ/2 meters, and none of them can be positioned less
than λ/4 meter far away from the wall [16, 17]. Ful-
filling these requirements for every repetition of the
experiment, the microphone positions are chosen ran-
domly and sequentially. After a microphone position
is chosen a sphere of radius r = 2 m is generated
containing points that are not allowed for a new mi-
crophone position. This process is repeated until the
M desired microphone positions are chosen.
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2.2.1. Evaluation of the acoustic decay to obtain the
reverberation time estimation

Once the acoustic decays are obtained, the reverber-
ation time must be calculated following the method
described in the standard. The reverberation time is
estimated at the output of the filters by backwards
integration of the squared impulse response[16, 18],
as shown in Eq. (4).

y(t) =

∫ ∞
t

p2(τ)d(τ) =

∫ t

∞
p2(τ)d(−τ). (4)

Let us to define the energy decay in the logarith-
mic scale as Ym(t) in function of the pressure signal
recorded by every microphone.

Ym(t) = 10 log10(ym(t)) = 10 log10

(∫ ∞
t

p2(τ)d(τ)

)

= 10 log10

(∫ t

∞
p2(τ)d(−τ)

)
. (5)

As reverberation time measurements are performed
using analog to digital conversion (digital sound level
meters and analysers), it is possible to derive its dis-
crete version Ym[n] = Ym(nTs), by assuming that the
signals are sampled at a frequency rate, fs = 1

Ts
,

and have a finite number of samples, N , as shown
in Eq. (6).

Ym[n] = 10 log10(ym[n]) =

= 10 log10

(∑N
k=n p

2
m[k]

fs

)
dB. (6)

The reverberation time of a room can be estimated
either by averaging the reverberation times of each
individual energy decay or performing a single esti-
mation from the averaged energy decays. If the lat-
ter is chosen, the averaged energy decay curve can be
written as follows:

Y [n] = 10 log10

(∑N
k=n

1
M

∑M
m=1 p

2
m[k]

fs

)
dB, (7)

where M is the number of acoustic decays and N the
number of samples.

Fig. 1 shows an example of energy decay curves
simulated with 15 different microphone positions for
a given room of dimensions Lx = 11.3 m, Ly = 10.2 m
and Lz = 3.3 m. These decays were obtained at the
output of a 50 Hz third-octave band filter. The mean
decay curve calculated as defined in equation (7) is
shown too. It is interesting to note that the energy
decay curve at every single point is less linear than
the mean decay curve, therefore the estimation of the
reverberation time will be more precise if it is done
using the averaged energy decays.
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Figure 1. Energy decay curves obtained (in logarithmic
scale) for 15 different microphone positions at the output
of a 50 Hz third-octave band filters (Actual reverberation
time within the band is around 1.7 s)

To minimize the influence of the filters, we are using
the time-reversed filtering technique –see ref [6]. The
average energy decay is then obtained applying the
equation (7). Depending on the dynamic range used
in the evaluation of the reverberation time, the EDT,
T20 or T30 are estimated. The averaged slope of the
energy decay in this case can be written as:

b =

∑N
k=1(t[k]− t̄)(Yfit[k]− Ȳfit)∑N

k=1(t[k]− t̄)2
, (8)

where Yfit is the vector containing the samples of Y [n]
within the dynamic range of interest [−5dB,−(R +
5dB)] (assuming normalization (i,e. max(Y [n]) =
0dB)), and t is the vector containing the correspond-
ing times. The estimation of the reverberation time
with a dynamic range R from the slope of the aver-
aged acoustic decay can be be written as shown in
Eq. (9).

TR,2 =
−60

b
. (9)

2.3. A Bootstrap based method to obtain
confidence intervals for reverberation
time measurements

In many practical situations the central limit theo-
rem can be invoked to assert that a given estimator
is asymptotically distributed as a Gaussian random
variable. This can be true for some estimators, if the
sample X = {X(1), X(2), ..., X(n)} is large enough.
But this is not the case for all the reverberation time
measurements, mainly at low frequencies. Due the no-
table variability of the energy decay curves over the
room, filtering and the method used to estimate the
reverberation time, the straight line that best fits the
decay curve has a random slope b, following some un-
known distribution, let say Fb. The distribution of the
slope is unknown: it depends on the number of modes
within the filter band, which implies that it depends
on the kind of room (volume and room shape) and the
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modal density – see [5]. Hence, any assumption about
Fb will lead to non-generalizable results. In fact, the
standard [16, 17] recommends to increase the number
of microphone positions or divide the measurement in
different decoupled spaces that may potentially have
a different reverberation time, for some complex ge-
ometries. Note that for that kind of enclosures the
distribution of the measured slope Fb over the whole
volume will be multimodal, so any estimation of the
uncertainty based on the assumption of normality will
lead to a completely biased results.

Regarding the expression of the estimator, given by
Eq. (8), there is no single expression to assert the stan-
dard error of it. Because of that, and due the small
number of independent source/microphone positions
that are usually available in a practical measurement,
the bootstrap principle can be used to derive the stan-
dard error and to get confidence intervals. Let us to
rewrite the expression of the energy decay curve y[n],
which is the sampled version of the energy decay pro-
cess, Y [n], Eq. (7), in natural units. Let y[n] be the
effective energy decay curve, obtained by averaging
the squared pressure signals, as follows,

y[n] =
1

Mfs

M∑
m=1

N∑
k=n

p2m[k] =
1

Mfs

M∑
m=1

ym[n], (10)

where the only modification with respect Eq. (7) is the
change in the order of the integral and the sum (and
the absence of the logarithm). Eq. (10) means that
averaging of the squared pressure signals is equiva-
lent to averaging the energy decays. This fact allows
to use the bootstrap principle for an application in
which the resampling with replacement technique is
physically justified. Due the periodicity of the eigen-
functions for most of the rooms, even for some com-
plicated geometries, it can be proven that the proba-
bility of placing two microphones in two acoustically
symmetric positions for some frequency bands is not
negligible, mainly at low frequencies. It means that
for some points of the room, the decay curve within
a given frequency band will have a similar shape.
The replacement during the resampling can model
this effect. Thus, the classical bootstrap technique by
resampling (with replacement) the M energy decay
curves can be applied to obtain an estimate about
the uncertainty or the accuracy of our estimator, as
shown in table I. The resampling is performed over
measurement data and the desired averaged slope is
computed by applying Eq. (10) and Eq. (8). The set
{y1[n], · · · , yM [n]} is the sample of M decays and the
set {y∗k,1[n], · · · , y∗k,M [n]} is the kth bootstrap sample
obtained by resampling with replacement.

Table I. A bootstrap-based method to obtain confidence
intervals for Reverberation Time Measurements

Step 0: Measurement: Collect the data
pm[n] = pm(nTs) and compute the energy decay

curves for all the pressure signals Eq. (4)
{y1[n], y2[n], ..., yM [n]}.

Step 1: Resampling: Draw a sample,
{y∗k,1[n], y∗k,2[n], ..., y∗k,M [n]}, by resampling with

replacement (of the same size M).

Step 2: Effective decay curve: Average the energy
decay curves to obtain the effective decay curve in the

logarithmic scale, Eq. (7).
Y ∗
k [n] = 10 log10

(
1
M

∑M
m=1 y

∗
k,m[n]

)
.

Step 3: Bootstrap estimation: Then, from Y ∗
k [n],

obtain the vectors Yfit and t and calculate b∗k, by
aplying Eq. (8).

Step 4: Repetition: Repeat steps 1-3 many times to
obtain a total of B bootstrap statistics

{b∗1, b∗2, ..., b∗k, ..., b∗B}.

Step 5: Ranking: Sort the bootstrap estimates of the
slope b∗k into increasing order,
[b∗k]1 ≤ [b∗k]2 ≤ ... ≤ [b∗k]B ,

where [b∗k]j is the j − th smallest value of b∗k.

Step 6: Confidence interval: Thus, if [[b∗k]q1 , [b
∗
k]q2 ]

is an interval containing (1− α)B of the estimates,
being q1 = bBα/2c and q2 = B − q1 + 1, then the
interval ([b∗k]q1 , [b

∗
k]q2) is a (1− α)100% confidence
interval for b.

3. Results and discussion

3.1. Measurements

In order to validate the conclusions of this inves-
tigation and the proposed method, a set of 41
source/microphone positions were used to perform a
reverberation time measurement in a real classroom
of the Telecommunications Engineering School – Uni-
versity of Vigo. Concretely the classroom T-104. A
model of such room is shown in Fig. 2. It’s shape does
not match a shoe-box: one of the side walls has an
oblique angle and, on the other hand it contains sev-
eral furniture elements (desks, windows, a blackboard,
etc). Therefore, natural modes are quite different from
those corresponding to a box-shaped room, as it was
shown in [19] by Finite Element Method – FEM – sim-
ulations. The classroom has a Volume V=332.67 m3,
a heigth H=3.20 man active surface S= 472.76 m2 and
80 desks. A subsampling technique can be applied to
obtain subsamples of M < 41 source/microphone po-
sitions to simulate measurements with less points i.e.
sets of measurement with samples of the same size
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]

Figure 2. Model of the measured classroom (using Google
SketchUp)
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Figure 3. Sample distribution of T20 at the 63 Hz third-
octave band for the measured classroom using M=15
source/microphone positions.
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Figure 4. Sample distribution of T20 at the 100 Hz third-
octave band for the measured classroom using M=15
source/microphone positions.

as the usual number of measurements taking accord-
ing to the standards. Thus a large number of mea-
surements of the reverberation time in the room can
be simulated without limiting the generalization of
results. In order to validate the conclusions and the
proposed method using the maximum number of in-
dependent signals a dynamic range R = 20 dB has
been taken because in some of the measurements the
45 dB dynamic range needed to evaluate T30 accord-
ing to the standard was not available. Fig. 3 and 4
show the PFDs of the sample at the 63 Hz and 100
Hz frequency band respectively. It can be observed
how the PDF of the 63 Hz frequency band is strongly
asymmetrical, as it has also been described in the lit-
erature [4, 5]. This result justifies by itself the use
of bootstrapping to calculate the confidence levels in
reverberation time measurements at low frequencies.

Table II. Estimated confidence level after some iterations
for the estimators T20 and T30 - nominal level of 95% -
Room of dimensions Lx = 11.3 m, Ly = 10.2 m and Lz =
3.3 m

Realizations
Band Parameter 100 200 500

50 Hz
T20 0.94 0.925 0.926
T30 0.98 0.990 0.986

63 Hz
T20 0.94 0.945 0.940
T30 0.94 0.935 0.932

80 Hz
T20 0.93 0.965 0.966
T30 0.94 0.940 0.944

100 Hz
T20 0.98 0.985 0.988
T30 0.93 0.935 0.960

3.2. Convergence of the estimation of confi-
dence intervals

In order to validate the proposed method the MC sim-
ulation presented in section 2.2 was performed to gen-
erate the acoustic decays. These decays has a know
slope and a known true value for the reverberation
time can be defined, which is not possible in the case
of real measurements. M = 15 acoustic decays have
been used for every simulated room to get confidence
intervals following the method described in in Table I.
An method to get a nominal confidence of p% for a
given parameter should contain its expected value the
p% of the times. By applying this idea to our prob-
lem, if the reverberation time measurement were re-
peated many times in a room, the confidence interval
given by the proposed method should contain the ex-
pected value of the estimator the p% of the times.
Then, assuming that its expected value is known for
every room (obtained as a result of the previous MCM
simulation), a simple way to validate the method is to
calculate the confidence interval for each repetition of
the reverberation time measurement. Thus, the con-
fidence level reached by the method can be estimated
by measuring the sample probability of obtaining a
confidence interval that contains the expected value
of the estimator. This validation process was done
for several rooms with different dimensions and dif-
ferent reverberation times. Table II shows the confi-
dence levels reached for the T20 and T30 after different
numbers of repetitions of the MCM simulation for the
same enclosure. As it can be seen, the mean estimated
confidence levels tend to the nominal confidence level
(95%) for both estimators (T20 and T30), meaning that
the proposed method works reasonably well for this
room.

Finally, in order to obtain the minimum number of
microphone-source positions needed to obtain a con-
vergence of the confidence level to the nominal value
of 95 % a computationally expensive simulation has
been carried out. The resampling has been performed
200 times and for each frequency band 500 bootstrap
repetitions has been carried out to obtain the confi-
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Table III. Convergence of the confidence levels as function
of the number of source-microphone positions (number of
decays) – Nominal confidence level 95 %
.
Number
of decays

Frequency Band
50 Hz 63 Hz 80 Hz 100 Hz

4 87.2 % 88.7 % 89.1 % 83.0 %
5 91.2 % 89.2 % 91.7 % 84.3 %
6 89.8 % 92.1 % 89.5 % 84.7 %
7 92. 3 % 91.4 % 92.8 % 91.3 %
8 94.7 % 95.9 % 95.4 % 93.9 %
9 95.1 % 94.8 % 94.3 % 95.8 %

dence levels. To avoid well known problems related
to the filtering [20, 6, 12] the results are referred to
the use of time-reversed filtering of the acoustic de-
cays, so the results are considered applicable to situ-
ations with BT>4 AND time-reversed filtering. The
Table III shows that a minimum of 8 independent
acoustic decays are needed to guarantee the conver-
gence to a nominal confidence level of 95%. The se-
lection of microphone-source positions should avoid
equivalent positions (i.e. microphone positions that
are symmetric).

4. Conclusions

A bootstrap based method to calculate confidence
intervals for reverberation time measurements has
been proposed and validated. Results of the validation
process are reasonably good for box-shaped rooms
with different reverberation times. Furthermore, the
method has been tested against real measurements
performed in a real classroom with a more complex ge-
ometry that contains a notable amount of active sur-
face, obtaining similar results. Therefore, this method
is expected to work well for other shapes due the
correspondence between the bootstrap principle and
the periodic nature of the problem. The proposed
method works pretty well for most kind of box-shaped
rooms and reverberation times and it is expected to
work well for other geometries. It has been calculated
that a minimum of 8 independent acoustic decays are
needed to guarantee the convergence to a nominal
confidence level of 95 %. Independent acoustic decays
could be considered if during the placement of micro-
phone source, symmetric situations are avoided in the
set of positions. It has been shown, by observation of
the convergence of the calculations of confidence lev-
els, that the set of measurements taken should provide
at least 8 independent acoustic decays to guarantee a
confidence level of 95 %.
Future work should be oriented to test the proposed
method in real measurements in other kind of rooms,
in order to validate the conclusions of this investiga-
tion and the proposed method for other kind of enclo-
sures. It would be interesting to test the method for

lower BT products, because then the error due the
filtering becomes the dominant factor.
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