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Summary 

This paper extends the definition of the one sided radiation impedance of a panel mounted in an 

infinite rigid baffle which was previously used by the authors so that it can be applied to all 

transverse velocity wave types on the panel rather than just to the possibly forced travelling plane 

transverse velocity waves considered previously by the authors. For the case of plane waves on a 

rectangular panel with anechoic edge conditions, and for the case of standing waves on a 

rectangular panel with simply supported edge conditions, the equations resulting from one of the 

standard reductions from quadruple to double integrals are given. These double integral  equations 

can be reduced to single integral equations, but the versions of these equations given in the 

literature did not always converge when used with adaptive integral routines and were sometimes 

slower than the double integral versions. This is because the terms in the integrands in the existing 

equations have singularities. Although these singularities cancel, they caused problems for the 

adaptive integral routines. This paper rewrites these equations in a form which removes the 

singularities and enables the integrals in these equations to be evaluated with adaptive integral 

routines. 

PACS no. 43.20.Rz, 43.40.Rj, 43.55.Rg, 43.55.Dt 

 
1. Introduction

1
 

The authors [1-3] have recently defined the 

radiation impedance of a plane panel mounted in 

an infinite plane baffle as the average of the 

specific acoustic impedance over the surface of the 

rectangular panel when a possibly forced plane 

transverse velocity wave is propagating on the 

surface of the rectangular panel. It was assumed 

that the edges of the panel were anechoic. This is 

the appropriate assumption for a forced wave, 

because after the forced wave is reflected at the 

edges of the panel, it propagates with the free 

wave number of the panel rather than with the 

forced wave number and hence has a different 

radiation impedance unless the incident wave was 

also freely propagating. 

This definition works because the possibly forced 

plane wave has the same root mean square (rms) 

transverse velocity over time at all points of the 

panel. When the radiation impedance of other 

wave types on the panel, such as standing waves, 
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is considered, this definition breaks down because 

the rms transverse velocity over time will possibly 

differ over the panel and may be zero at some 

points. Where the rms transverse velocity over 

time is zero, the specific acoustic impedance will 

be infinite and its average over the panel may not 

be finite. This paper gives a definition of the 

radiation impedance of a wave on a panel which 

gives the same result for a plane wave as the 

definition previously used by the authors. 

The definition of radiation impedance involves a 

quadruple integral. For a rectangular panel with a 

travelling plane wave or for a mode of a simply 

supported panel this quadruple integral can be 

reduced to a double integral using a standard 

technique [4-7]. In both these cases this double 

integral can be reduced to a much more 

complicated single integral. However when the 

single integral equations for the travelling plane 

case [7] were evaluated using adaptive integral 

routines, the integral did not converge when the 

wavenumber of the travelling transverse plane 

velocity wave was equal to the wave number in 

the fluid medium into which the panel was 

radiating. Also, at low frequencies, the single 
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integral evaluation was slower than the double 

integral evaluation. These problems are due to 

singularities in terms of the integrand. Although 

the singularities do cancel out each other, they do 

cause problems for the adaptive integral routines. 

This paper rewrites the integrand in a form that 

removes the singularities, so that the adaptive 

integral routines work correctly and effectively. 

This is also done for the impedance for the simply 

supported mode case. 

2. Definition of radiation impedance 

In this paper, the sinusoidal variation with time is 

assumed to be proportional to e
jωt

, where ω is the 

angular frequency, t is the time, j is the square root 

of -1 and e is Euler’s number. It should be noted 

that the assumption of e
-jωt

 for the sinusoidal 

variation with time gives the opposite sign for the 

imaginary part of the impedance. The impedances 

in this paper are normalized by dividing by the 

characteristic impedance of the fluid medium Zc, 

which is the product of the ambient density of the 

fluid medium ρ0 and the speed of sound in the 

fluid medium c. Note that root mean square 

amplitudes rather than peak amplitudes are used in 

this paper 

Consider a plane surface area S whose area is also 

denoted by S, mounted in an infinite rigid plane 

baffle in the x-y plane z=0, in which a two 

dimensional transverse velocity wave is 

propagating. The rms transverse velocity of the 

wave over in the positive z-axis direction is u(r0) 

where r0=(x0,y0,z0) is the position on the panel. 

The sound pressure in the fluid medium on the 

positive z side of the baffle at position r1=(x1,y1,z1) 

is given by the Rayleigh integral (See Eq. (2.4) of 

[8]) 

    1 1 0 0 0( ) ,c

S

p jkZ g u d r r r r r   (1) 

where gω is the Green’s function for a point source 

on an infinite rigid baffle which is given by 

    1 0, exp( ) 2g jkr r  r r   (2) 

where 

 

     

1 0

2 2 2

1 0 1 0 1 0

r

x x y y z z

 

     

r r
  (3) 

and k is the wave number in the fluid medium into 

which the wave is radiating on the positive z side 

of the baffle. 

The sound power W radiated by one side of the 

panel is 

   

     

*

1 1 1

*

1 0 0 1 0 1

Re

Re ,

S

c

S S

W p u d

jkZ g u u d d

 
  

 

 
  

 



 

r r r

r r r r r r

(4) 

It is desirable to be able to write the sound power 

W radiated by one side of the panel as 

 
2Re cW zZ S u 

 
  (5) 

where 

     
22 *

0 0 0 0 0

1 1

S S

u u d u u d
S S

  r r r r r (6) 

is the mean square transverse velocity of the plane 

surface area S. Hence it is convenient to define the 

normalized radiation impedance z of a wave on the 

surface S as 

     *

1 0 0 1 0 12
,

S S

jk
z g u u d d

S u
   r r r r r r   (7) 

If the transverse velocity of the plane wave on the 

surface S in the positive z-axis direction is 

 0 0 0( ) exp( . )bu u j r k r   (8) 

where kb =(kx,ky,0) is the wave number vector of 

the wave and u0 is the complex amplitude of the 

wave, then 

 
2 2

0u u   (9) 

and 

 

 

2

1 0 0 1

exp( )

2

exp .

S S

b

jk jkr
z

S kr

j d d






  

 

k r r r r

  (10) 

This agrees with equation (10) of [2] which was 

derived using the authors’ previous definition. 

If the transverse velocity of the standing wave on 

the surface S in the positive z-axis direction is 

    0 0 0 0( ) sin sinx yu u k x k yr   (11) 

then 

 

2
2 0

4

u
u    (12) 

where it has been assumed that u(r0) is zero on all 

four edges of the panel. In this case 

 

 

     

0

0 1 1

0 0 1 1

2 exp( )
sin

sin sin sin

x

S S

y x y

jk jkr
z k x

S kr

k y k x k y

dx dy dx dy




  

  (13) 

The real part of this equation agrees with equation 

(2.5) of [5] for the radiation efficiency which is 

the real part of the normalized radiation efficiency. 

3. Reduction to double integral 
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If S is the rectangle 

 ,  ,  0x a y b z     (14) 

then the quadruple integrals in equations (10) and 

(14) can be reduced to double integrals using the 

methods of Appendix A of [6], Appendix 12.A of 

[4], [7] and [5]. Equations (10) and (14) become 

 

   

   
2 2

2
2 2

0 0

2 2

2 cos
2

2 cos

a b

x

jk

y

jk
z a k

ab

e
b k d d

k

 

 


   
 

 

 




 
  (15) 

and 

      

     

2 22
2 2

2 20 0

1

1

2

2 cos s

2 cos s

jk
a b

x x

y y

jk e
z

ab k

a k k

b k k d d

 

  

   

     

 




   

  
 

 

  (16) 

where 

  
 1

1              if 0
s

sin  if 0

x
x

x x x


 


  (17) 

Note that s1(x) is the un-normalized sinc function 

used in mathematics. Both MATLAB and MAPLE 

use the normalized sinc function which is equal to 

s1(πx) and is used in signal processing. 

Define 

 
2 2

b b x yk k k  k   (18) 

 xk

k
    (19) 

 
yk

k
    (20) 

 
2 2bk

k
       (21) 

Equation (16) can be written as [5] 

  
 

 
 

2 22
2 2

2 20 02

sin
2 cos

sin
2 cos

jk
a bjk e

z
ab k

k
a k

k

k
b k d d

k

 

  

 
 

 

 
   

 

 




   
  

   

   
  

   

 

 (22) 

4. The travelling plane wave case 

The double integrals in equations (15) and (22) 

can be converted to more complicated single 

integrals by converting to polar coordinates. Rhazi 

and Atalla [7] have given the result for the real 

part of equation (15) and indicated how to apply 

the method to obtain the imaginary part of 

equation (15). Rhazi and Atalla successfully used 

“a Gauass numerical integration scheme” written 

in FORTRAN to calculate the real part. However, 

when the authors of this paper evaluated their 

equations for the real part using the standard 

adaptive integral routine in MATLAB with its 

default settings, the adaptive integral routine did 

not converge when kb=k. It was also discovered 

that it was faster to evaluate the real part of double 

integral in equation (15) using the standard 

adaptive double integral routine in MATLAB with 

its default settings when ka and kb were small. 

The reason is that Rhazi and Atalla’s equations 

have terms which have singularities when kb=k. 

Although these singularities do cancel out, they 

are sufficient to cause problems for MATLAB’s 

adaptive integral routines. The authors have 

overcome this problem by writing the equations in 

a different form and also derived the modified 

equations for the imaginary part. 

    2

2 1s sx x   (23) 

    3 2s sx x x   (24) 

  
   4

1

0                             if 0
s

s cos  if 0

x
x

x x x x


 

   
  (25) 

  
 5

4

1 3         if 0
s

s  if 0

x
x

x x x


 


  (26) 

      6 1 2 2 / 2s x s x s x    (27) 

  
   7

2 1

0                               if 0

s 2 s  if 0

x
s x

x x x x


 

   
 (28) 

      8 4 7s ss x x x   (29) 

      9 1 5s 2ss x x x   (30) 

    1 1 cos sina k           (31) 

    2 1 cos sina k           (32) 

    3 1 cos sina k           (33) 

    4 1 cos sina k           (34) 

  arctanl b a    (35) 

 
 

 

2 cos      if 0

2 sin   if 2

l

l

a
R

b

  

   

 
 

 
  (36) 

  
4

1 3

1

s 2r t

t

T k a R


    (37) 

  
4

1 1

1

si t

t

T k a R


    (38) 
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     
4

2 4

1

cos s 2r t

t

T kR a R a


 
    

 
   (39) 

     
4

2 6

1

cos s 2i t

t

T kR a R a


 
    

 
   (40) 

     
4

3 4

1

sin s 2r t

t

T kR a R b


 
    

 
   (41) 

     
4

3 6

1

sin s 2i t

t

T kR a R b


 
    

 
   (42) 

 
   

 
2 4

4 8

1

sin cos
s

4
r t

t

kR
T a R

ab

 



    (43) 

 
   

 
2 4

4 9

1

sin cos
s

4
i t

t

kR
T a R

ab

 



    (44) 

For p equals r or i 

 
4

1

2p pt

t

T R T


 
  

 
   (45) 

 
/2

0
p pz T d



     (46) 

The value of equation (15) is 

 r iz z jz    (47) 

5. The simply supported mode case 

Leppington et. al. [5] give the results of 

converting the real part of equations (16) and (22) 

to a single integral by converting to polar co-

ordinates. However their individual terms have 

singularities which cancel out. These singularities 

would cause difficulties with MATLAB’s adaptive 

integral routines. Leppington et. al. also extend the 

range of integration from 0 to π/2 radians to 0 to 

2π radians. This is undesirable from a numerical 

point of view. Thus the authors have rewritten the 

equations of Leppington et. al. without 

singularities in a format that is suitable for 

evaluation by MATLAB’s adaptive integral 

routines. They have also derived the equations for 

the imaginary part which was not done by 

Leppington et. al.. 

The integrands Tr and Ti are first evaluated when 

both α and β are non-zero. 

  
4

1 3

1

s 2r t

t

T k a R


    (48) 

  
4

1 1

1

si t

t

T k a R


    (49) 

    
4

21 4

1

cos sr t

t

T kR a R


      (50) 

    
4

21 6

1

cos si t

t

T kR a R


      (51) 

    
4

22 1

1

1 s
t

r t

t

T a R 


      
   (52) 

    
4

22 3

1

1 s 2
t

i t

t

T a R 


       
   (53) 

For p equals r or i 

  
2

2 2

1

2p p t

t

T T a


 
  
 
   (54) 

 
1 if 1 or 4

1    if 2 or 3
t

t
b

t

 
 


  (55) 

    
4

31 4

1

sin sr t

t

T kR a R


      (56) 

    
4

31 6

1

sin si t

t

T kR a R


      (57) 

  
4

32 1

1

sr t t

t

T b a R 


 
    
 
   (58) 

  
4

32 3

1

s 2i t t

t

T b a R 


 
    
 
   (59) 

For p equals r or i 

  
2

3 3

1

2p p t

t

T T b


 
  
 
   (60) 

      
4

2

41 8

1

sin cos sr t

t

T kR a R 


    (61) 

      
4

2

41 9

1

sin cos si t

t

T kR a R 


    (62) 

 
4

42 6

1

cos( ) sr t t

t

T R b a R 


 
    

 
   (63) 

 
4

42 4

1

cos( ) si t t

t

T R b a R 


 
    

 
   (64) 

     
4

43 6

1

sin 1 s
t

r t

t

T R a R 


       
   (65) 

     
4

43 4

1

sin 1 s
t

i t

t

T R a R 


      
   (66) 

 
1 if 1 or 2

1    if 3 or 4
t

t
c

t

 
 


  (67) 

    
4

44 3

1

s 2r t t

t

T c a R k


 
    
 
   (68) 

    
4

44 1

1

si t t

t

T c a R k


 
    
 
   (69) 

For p equals r or i 

  
4

4 4

1

4p p t

t

T T ab


 
  
 
   (70) 
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4

1

2p pt

t

T R T


 
  

 
   (71) 

If α is zero and β is non-zero, the integrands Tr and 

Ti are evaluated as follows. First a1 and a2 are 

redefined. 

  1 1 sina k        (72) 

  2 1 sina k        (73) 

  
2

1 3

1

2r t

t

T k s a R


    (74) 

  
2

1 1

1

i t

t

T k s a R


    (75) 

    
2

21 4

1

sinr t

t

T Rk s a R


      (76) 

    
2

21 6

1

sin si t

t

T Rk a R


      (77) 

    
2

22 1

1

1 s
t

r t

t

T a R 


      
   (78) 

    
2

22 3

1

1 s 2
t

i t

t

T a R 


       
   (79) 

For p equals r or i 

  
2

2 2

1

2p p t

t

T T b


 
  
 
   (80) 

 
2

1

p pt

t

T R T


    (81) 

If β is zero and α is non-zero, the integrands Tr and 

Ti are evaluated as follows. First a1 and a2 are 

redefined. 

  1 1 cosa k        (82) 

  2 1 cosa k        (83) 

  
2

1 3

1

2r t

t

T k s a R


    (84) 

  
2

1 1

1

i t

t

T k s a R


    (85) 

    
2

21 4

1

cosr t

t

T Rk s a R


      (86) 

    
2

21 6

1

cos si t

t

T Rk a R


      (87) 

    
2

22 1

1

1 s
t

r t

t

T a R 


      
   (88) 

    
2

22 3

1

1 s 2
t

i t

t

T a R 


       
   (89) 

For p equals r or i 

  
2

2 2

1

2p p t

t

T T a


 
  
 
   (90) 

 
2

1

p pt

t

T R T


    (91) 

If α and β are both zero, the integrands Tr and Ti 

are evaluated as follows. 

  2 1 cosrT kR      (92) 

  2siniT kR   (93) 

Now the real part zr and the imaginary part zi of 

equations (16) and (22) can be calculated with a 

single numerical integration. 

 
/2

0
p pz T d



     (94) 

When numerically evaluating the integral in 

equation (94) with MATLAB’s standard adaptive 

integral routine with its standard settings, it was 

found that it was necessary to assume that α and/or 

β were zero if their magnitudes were less than 1 x 

10
-6

. The value of equations (16) and (22) is 

 r iz z jz    (95) 

6. The azimuthal average 

The azimuthal angle ϕ to the x-axis can be 

calculated. 

    arctan arctan y xk k      (96) 

Then 

      cos       (97) 

      sin       (98) 

where μ(ϕ) has been shown as a function of the 

azimuthal angle ϕ because it will sometimes 

depend on the direction of propagation, as is the 

case for a freely propagating wave on an 

orthotropic panel. The weighted average zav of the 

impedance given by equations (47) or (94) over 

the azimuthal angle ϕ with weighting function 

w(ϕ) is 

      
2 2

0 0

azz w z d w d

 

         (99) 

If w(ϕ) and μ(ϕ) are symmetrical functions about 

the x and y axes, the ranges of integration over the 

azimuthal angle ϕ can be reduced to 0 to π/2 

radians by symmetry. If w(ϕ) and μ(ϕ) are constant 

functions of the azimuthal angle ϕ and the 

rectangle S is a square, the ranges of integration 

over the azimuthal angle ϕ can be reduced to 0 to 

π/4 radians by symmetry. The weighting function 

w(ϕ) can be used to account for the fact that the 

wave impedance of an orthotropic panel varies 

with the azimuthal angle ϕ of propagation. The 
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quantity zav is what Leppington et al.’s [5] and 

Maidanik’s [9, 10] approximate equations and the 

authors’ [1-3, 11] previous approximate equations 

for the radiation efficiency of a rectangular panel 

in an infinite baffle are trying to approximate. 

7. Simply supported mode 

If the rectangular panel S is simply supported in 

the infinite rigid baffle, each of its transverse 

velocity modes has the transverse velocity 

amplitude on the surface of the panel given by 

equation (11). Each of these modes has m and n 

positive integer half wavelengths in the directions 

of the x and y axes respectively. Each mode is 

freely vibrating at its natural frequency or being 

forced to vibrate at a frequency which corresponds 

to a wave number of k in the fluid medium on one 

side of the panel into which the panel is radiating 

sound. In this case the variables α and β can only 

take the following discrete values. 

  2m ka    (100) 

  2n kb    (101) 

However for the purposes of calculating the 

azimuthally averaged impedance, it is convenient 

to regard them as continuous variables. Because 

the variables α and β are positive, azimuthal 

averaging only needs to be conducted over the 

range from 0 to π/2. 

The minimum value of μ in this case is 

    2 2min 1 1 2a b k     (102) 

For a square where a=b, the minimum is 

    min 2ka    (103) 

Thus, it does not really make sense to calculate the 

impedance for the standing wave case when μ is 

less than the minimum value given by equations 

(102) and (103). 

8. Conclusions 

This paper has given single integral versions of the 

equations for the normalized radiation impedance 

of a rectangular panel which remove the 

singularities so that the integrals can be 

successfully and effectively evaluated using 

adaptive integration. These equations are given for 

the real and imaginary parts for the travelling 

plane wave case and for the simply supported 

mode case. 
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