
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

New ways of lumped parameter analysis in an 
enclosed environment. 

Chris van Dijk 
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Summary 
When the prediction of acoustics needs to be done accurately, and fast. It is good to use a lumped 
parameter approach. Nowadays Sabine’s equations are leading when making lumped parameter 
analysis, but Eyring already proposed to skip some of the simplifications in order to analyze 
anechoic rooms. In this paper new equations for lumped parameter room acoustics are derived, that 
could be used regardless of the type of room. The mathematical simplification of Sabine turns out 
to lead to high inaccuracies at higher absorption values in anechoic rooms, this is consistent with 
experience in the field. 
In case of the determination of the sound reduction index, both the new, and Sabine equation work 
well in laboratory conditions. In a room with more sound absorption the use of the new equation 
proposed in this paper is a necessity. The new equation has considerable consequences throughout 
the field of room acoustics. For the reverberant distance, a more general equation is proposed. 

 
 
1. Introduction1 

Practice shows a difference in the sound reduction 
index between highly reflective rooms, and 
anechoic rooms. In absorbent rooms the sound 
reduction index seems to decrease without a logical 
explanation. This phenomenon needs to be 
explained in order to make accurate predictions in 
room acoustics. Generally the evaluation of the 
sound insulation value is done by the equations of 
Sabine [1]. 
A possible cause for the negative effect on the 
sound reduction index could be the simplifications 
that are involved in the analysis of the room 
acoustics based on Sabine. In the current paper the 
mathematical lumped parameter analysis of room 
acoustics is expressed in Chapter 2.1. The 
expressions gained differ from Sabine [1], and 
Eyring [2]. The difference between these 
expressions, and previous work is quantified in 
Chapter 2.2. In chapter 3.1, the influence of the 
direct field is discussed as a second possible cause 
for a lower reduction index in anechoic rooms. In 
chapter 3.2 the influence of the lumped parameter 
analysis leads to a new equation for the reverberant 
distance. 
 
 

                                                      

 

2.1. Lumped parameter room acoustics  

When an acoustic source is reflected in an enclosed 
area, not only the source, but also the reflections of 
the source can be heard. In theory the number of 
reflections of the source are endless, and the 
acoustic energy that remains in the room after a 
certain number of reflections equals: 
 

              (1) 
 
Where Ea,0 is the acoustic energy introduced to the 
room in a timeframe till the first reflection, α is the 
sound absorption coefficient, and n is the (average) 
number of reflections. For noise control it is 
interesting to know how the infinite number of 
reflections influence our hearing, or a measurement. 
Therefore first the cumulated sound power that is 
preserved in the room is determined:  

 

 

              (2)
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Thus the infinite sum of reflections can be 
simplified dramatically. This also implies room 
acoustics analysis can be done rather easily, as long 
as the average absorption value of a room can be 
determined. Instead of measuring the absorption 
value, the absorption value is determined from 
measurements of the reverberation time. The 
reverberation time is the time it takes to reduce an 
initial sound level by 60 dB. 
 

   (3) 

 
Where t is the time, T is the reverberation time, and 
Lp is the sound pressure level. Note that: 
 

 (4) 

 
Where c is the velocity of sound, Lw is the sound 
power level, and p is the mean free path. Since: 
 

    (5) 
 
,When t = T, the average absorption value can be 
found as a function of the reverberation time: 
 

    (6) 
 
And vice versa: 
 

(7) 

 
The mean free path according to Sabine [1], and 
Eyring [2]: 
  

    (8) 
  

      (9) 
 
Where V is the volume of the room, and S is the 
internal boundary area. They have also adopted the 
assumption that the sound field in a room is 
omnidirectional homogeneous. This assumption 

will be adopted in this paper, so their equations for 
the mean free path can be used. 
 
Under the assumption that the sound path is evenly 
distributed, or well averaged by the measurement 
procedure, the measured value could be predicted. 
The reflective sound will after each reflection, since 
the sound is assumed to be evenly distributed over 
the boundary surface, occupy a volume that equals 
the absorption area multiplied by the mean free 
path, this will be called the fictitious volume. If the 
fictitious volume is relatively high to the real 
volume, a higher sound pressure level is to be 
expected.  
 For example a room of 3 by 4 by 5 m. has a 
surface area = 94 m2, while the volume equals 60 
m3. The mean free path is either 2.43 or 2.55 m, for 
respectively equation 8 or 9. The fictitious volume 
is equal to the volume of the room multiplied by 
respectively 3.8 or 4. So roughly 4 times more 
sound will be measured as impacts the boundary 
area. This is logical when you consider the 
boundary area cannot, in contrast to a random point 
within the room, be  approached from all directions. 
While the measured sound pressure is influenced by 
pressure fluctuations coming from all directions. 
 This may seem like the sound in the 
receiving room is overvalued by a factor 4, and the 
Sound insulation value in a laboratory is thus  
underestimated by 300%, but then one would forget 
that on the sending room the same effects hold, and 
only about 1/4th of the sound pressure level 
measured in the sending room radiates the 
separating element. This relation forms the basis 
behind the theory behind the commonly used  
diffusivity correction.  
Note that when there is only direct radiation on the 
separating element, the reduction index could 
increase due to the lack of flanking sound. 
 
2.2 Quantification of the difference between 
the proposed equations, and the equations 
based on Sabine. 

Now the theoretical model is complete to evaluate 
the room acoustics and compare this mathematical 
model to the theory based on Sabine [1]. The origin 
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of the differences between Sabine [1] follows from 
a simplification. Eq. 7 can be rewritten as: 
 

            (10) 

 
Then when eq. 9 is used to determine p, and: 
 

   (11) 
 
Sabine [1] can be derived: 
 

         (12) 
 
Where A is Sα. In other words Sabine [1] neglecting 
all but the first term of the Taylor expansion. When 
the number of α is very low the simplification works 
pretty well, but for higher values of α the 
simplification of Sabine causes a higher defect.
 When the velocity of sound is 340 m/s, 
eq. 7 and 9 can be used to derive: 
 

          (13)  

 

This equation is valid for any type of room. Because 
the relation between T and α is different from the 
relation stated by Sabine[1], and Eyring [2], it 
would be more clear to call α in eq. 2, 4, 5, 6, 7, 10, 
and 13 αvDijk, and α in eq. 12 αSabine. 
These differences can be seen more clearly in 
figure 1. Where the deviation is a function y(x): 
 

               (14) 

 
Eyring [2[ has made a different relation between 
reverberation time, and sound absorption for dead 
rooms [2]: 
  

            (15) 

 
The full equation has a different constant than eq. 
13. The deviation becomes a plotted in green  in 
figure 2: 
 

             (16) 

 
The simplified equation of Eyring [2] is shown in 
red in figure 2, based on the following equation: 

Figure 1. Deviation of Sabine from the mathematical model as a function of the real average α value.  
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              (17) 

 
These relations state the error that occurs when the 
reverberation time or other properties of the room, 
that are related to the reverberation time are 
calculated from a value of α, according to eq. 7. 
Note that this error is also to be expected for the 
sound pressure level. 
 

Figure 2 Deviation of the predictions made by Eyring, 
and Sabine as a function of the mathematical average 
absorption coefficient vDijk 
 

When the properties of a room are not 
predicted, the absorption coefficient can be 
determined from the reverberation time. The error 
in the determined value of α as a function of αvDijk is 
the same as in figure 1 and 2. However it is common 
practice to determine αSabine, therefore the deviation 
as a function of αSabine in figure 3. 

Note that in theory there is no limit to the value of 
αSabine, whereas αvDijk cannot exceed unity. 

 
One of the basic equations in the determination 
of the sound reduction index states the relation 
between the average α-value of the room multiplied 
by the total room surface, the boundary surface, and 
two sound pressure levels [3]: 
 

            (18) 
 
Where LS, and LR are respectively the sound 
pressure level in the send room, and the adjacent 
receiving room, and Sc is the contact area between 
both rooms.  
Note that part of eq. 10 can be rewritten as: 
 

       (19) 
 
So there are three corrections done on the raw 
measured sound pressure level difference. The 
correction for the contact surface is a consequence 
of the definition of the sound reduction index, 
which is defined per area. The other two corrections 
are to correct for the accumulation of sound as 
proven in eq.2, and the geometry where the internal 
boundary area gets evenly irradiated by the sound 
as any other receiving surface. Eq. 19 can be applied 
in combination with eq. 7 or 13. 
 
3.1 Influence of direct field 

In this part, the contribution of the direct field in the 
appointed measurement positions is reviewed. In 
reverberant laboratory rooms international standard 
requirements are stated for the reverberation time: 
 

               (20) 
 
In an example would be a room of 5 by 4 m, with a 
height of 3 m, the range of acceptable values of  
could be determined: 
 

                (21) 

 (22) 
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So the direct filed only contributes to  

, which is between 4.5 and 9.9% of the total sound 
power level present in the room. Also the low value 
of  implies that the deviation from using Sabine is 
less than 10%. So for small laboratories the sound 
reduction index can be determined with Sabine 
within a mathematically acceptable accuracy. 

In an anechoic room however, the sound 
reduction is much higher, than the apparent sound 
reduction index that is determined in the field. 
Because the value of A in eq. 18 can be highly 
overestimated, when using eq. 12, as shown in 
figure 1 and 3. This means that a field measurement 
of the apparent sound reduction index, does not 
necessarily reflect on the quality of the installed 
element. Unless eq. 12 gets replaced by eq. 7. 
 In an anechoic room the contribution of the 
direct field is relevant. However the direct field is 
not irradiated from all sides. So the contribution of 
the direct field is highly dependent on the 
measurement positions, and the geometry of the 
source. 

When a sound reduction index is 
determined there are speaker positions in one room, 
and an adjacent room, where the only relevant 
sound source is the separation element. In a field 
measurement where the direct field is relevant, it is 
interesting to know how the microphone positions 
influence the measured values of the direct field. 
Therefore four examples are chosen. In two cases 
(B, and D) a point sound source is in the middle the 
separating wall, and in the other cases (A, and C) 
the separating wall is the sound source itself. The 
size of the separating wall is the width, times the 
height, as mentioned in table 1. 
 The direct sound pressure originated from a 
point source is: 
 

            (23) 

 
The sound pressure originated from a separating 
wall is: 
 

     (24) 

 
Where b is the width, h is the height, and y Is the 
distance from the separating element, and x is the 
distance from the source in the orthogonal direction. 
Cprox is the proximity correction [4], which is 1 dB 
as long as: 
 

             (25) 

   
Theoretically the lumped value  
 

          (26) 
 
Table 1: Direct field approaches in four cases 

Case average lumped length width Height D/E 
A 2,21E-02 4,26E-02 5 m 4 m 3 m 52% 
B 3,43E-02 4,26E-02 5 m 4 m 3 m 81% 
C 1,06E-02 1,85E-02 6 m 10 m 3 m 57% 
D 1,38E-02 1,85E-02 6 m 10 m 3 m 74% 

   
Table 1 shows D/E, which is the contribution of the 
direct field divided by the expected contribution of 
the direct field. The direct field is likely to 
contribute less to the measured value than expected. 
This phenomenon thus contradicts that in anechoic 
rooms lower sound reduction index values are 
found. The D/E value in table 1 is low, partly 
because of the asymmetric boundary conditions for 
measurement positions. This reduces the apparent 
defects in the use of Sabine. When a critical part in 
the separating element is responsible for the sound 
reduction index value (case B and D), the 
contribution of the direct sound is relatively 
accurately predicted, and a lower sound reduction 
index is to be expected. 
 
3.2 Reverberant distance 

In a concert hall, it is interesting to know at what 
radius the direct field has an equal contribution to 
the sound that is heard as the indirect field. This is 
called the reverberant distance, defined by Kuttruff 
[3]: 
 

                (27) 
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The direct field sound pressure level in a room 
originated from a point source is: 
 

             (28) 
 
Where r is the distance from the receiver till the 
source. The reverberant field sound pressure level 
at a random point in the room is: 
 

             (29) 

 
Wherein the number 4 comes from the use of eq. 9 
for p as described at the end of chapter 2.1. Note 
that now instead of 1/ , as in eq. 2, 1/ -1 is used, 
because of the missing contribution of the direct 
field.  
 When LPd = LPr, then r = rh. So the 
reverberant distance becomes: 
 

              (30) 

 
Eq. 7,9, and 27 can be combined to form: 
 

           (31) 

 
Then it is immediately clear that eq. 30, and 27 
differ in their relation to the term . However when 
eq. 27 is combined with eq. 9 and 12 the following 
equation can be stated: 
 

             (32) 

 
Note that when  the direct field is not neglected in 
eq. 29: 
 

  

  
 

              (33) 

 

Which is the same as eq. 32. In other words, the 
misinterpretation of the defined phenomenon in the 
field of room acoustics that follows from the 
simplification of Sabine is widespread. A great 
number of general relations may need to be 
reviewed. 
 
4. Conclusions 

The relation between the absorption coefficient  in 
a room, and the reverberation time should be written 

as:     
Where p is the mean free path, and c the speed of 
sound, this equation is suitable for any type of room. 
This has consequences on a lot of derived equations. 
The use of this equation enables the accurate 
determination of α, and the prediction of sound 
pressure levels in anechoic rooms. The reverbarent 

distance should be expressed as:  
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