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Abstract

By use of several loudspeakers it is possible to create constructive and destructive acoustic interference leading
to spatial sound zones with high (bright zone) and low (dark zone) sound pressure levels, respectively. The
loudspeaker control signals are commonly created by filtering the audio signals using Finite Impulse Response
(FIR) control filters. We are interested in using finite precision multiply-accumulate arithmetic in the FIR filter
operations in order to reduce the complexity of a potential hardware implementation. In a simulation study
based on a setup with 8 loudspeakers and for the frequency range 50 — 600 Hz, we demonstrate that using only
8 and 12 bits signed fixed-point arithmetic for the multiplier and adder, respectively, reduces the mean acoustic
contrast ratio between the bright and the dark zones by only 0.1 dB as compared to when using 32 bits arithmetic.
Reducing the word length of the adder below 12, significantly increases the sound pressure in the dark zone.

Keywords: sound zones, fixed point arithmetic, FIR filtering, variable word length simulation.

1 Introduction

Control of personal or individual sound zones refers to a specific problem within sound field control, where one
is interested in generating individual listening zones for separate listeners in some enclosed space, for example,
aroom [1] or a car cabin, [2]. It is common to consider the control of two sound zones in a room, and where the
sound field outside the zones is not controlled, [3]. In one of the zones, one would like to reproduce a specific
sound signal with a high quality and at a high sound pressure level. This zone is usually referred to as the bright
zone. In the other sound zone, one would like to reduce the sound pressure level as much as possible so that
it is harder to hear the audio signal. This zone is usually referred to as the dark zone. By combining a pair of
bright and dark zones, it is then possible to achieve different audio content in different spatial locations in the
same room.

To control the low frequencies in the sound zones, it is advantageous to make use of knowledge of the acoustical
properties of the enclosed space — such as the room transfer functions (RTFs), [4]. For the mid-frequencies,
conventional beam forming techniques are often sufficient, whereas for the highest frequencies, the directivity
of the loudspeakers can be exploited, [4].

The design of sound zones is currently an active area of research, see for example, [5, 6, 7, 8, 5, 9, 10]. To
take into account the RTFs of the enclosed space, it is often necessary to use long FIR filters having several
hundreds taps. Moreover, to achieve a high degree of acoustic separation (contrast) between the zones, it is
generally necessary to use several loudspeakers. Since the individual loudspeakers requires different filtered
signals, the complexity in terms of hardware requirements, execution time, and energy consumption of the filter
operations can be quite significant. To reduce this complexity it is possible to use finite word length arithmetic
for the implementations of the FIR filter operations, [11].
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The aim of this paper is to demonstrate in a simulation study the effect that finite precision arithmetic has on
the resulting acoustic separation between the bright and the dark zone as well as on the audio quality in the
bright zone. We will use a conventional FIR filtering approach to control the bright as well as the dark zone.
We will be using fixed-point implementations of the multiplier and the adder used for the FIR filter operations,
and we will focus on the low frequency region from 50 — 600 Hz. The RTFs used in the study to evaluate the
performance are real measurements of a room equipped with 8 loudspeakers. Our experiments reveal that in
particular it is the suppression of sound in the dark zone that is destroyed when the accuracy of the arithmetic
operations becomes too low. We also observe that a high degree of acoustic contrast and sound quality (in a
squared error sense) is possible using only 8 bits for the multiplier and 12 bits for the adder in the FIR filtering
operations.

2 Background on FIR filtering based sound zones

Let us assume the availability of a set of L > 0 loudspeakers, which are arbitrarily distributed within a room.
We adopt the notation and setup from [10], and assume that the sound pressure is known in M} and M, points in

the bright and dark zones, respectively. For example, this knowledge can be obtained by placing microphones

in the sound zones of the room. The sound pressure plgm) at the m-th point in the bright region is given by the

combined output of all L loudspeakers convolved with the their room impulse responses. Specifically, let u[k]
be the k-th sample of the single audio signal to be filtered and played out by the loudspeakers. Moreover, let
w® e RN ¢ =1,... L, be the impulse response of the control filter for the /-th loudspeaker, where N,

denotes the length in samples of the impulse response. We limit our attention to FIR filters, and N, is therefore

;Lém,f) € RNr be the room impulse response (RIR) between the ¢-th loudspeaker and the

m-th point in the bright zone, and where we limit the response to N}, samples. We define Eém,e) in a similar

manner for the dark zone. Using this notation, we can express the sound pressures pl()m) [k] and p&m) [k] at time

k as follows, [10]:

finite. Finally, let

L L Ny—1Np—1

p K =S (ﬁgm’@ o @® *u) K=" 5" S B OaOulk —i - 4, (1)
=1 =1 j=0 =0
L L Ny—1Np—1

p{ K =S (ﬁgm’@ o @® % u> k=" RO 1O lulk — i — 4], )
=1 =1 j=0 =0

where * denotes linear convolution. We assume the filters and the RIRs to be time invariant.

The average accumulated squared sound pressure level (or sound energy) Byrighe and Pyar in the bright and dark
zones, respectively, are then given by:

1 My Ny—1 (m) 1 Mg N,—1 (m)
) N m 2 S m 2
Pbrlght - NuMb mzz:l kzo |pb [k” ) Pdark - NuMd mzz:l kz;) |pd [k” ) (3)

where NV, denotes the length of the time-domain audio signal {u[k]}. A similar notation applies for the energy
Pjyark in the dark zone. We are now in a position to introduce the mean acoustic contrast ratio (expressed in dB)
and the normalized mean squared error (MSE), which are defined as follows:

M SN ™ k] — ) k]2

SoMe S B k] 2

C' = 10logy (PPbright> [dB], Q= 4)

dark

where ﬁ,()m) [k] is a specific desired target pressure level at time & at the m-th position in the bright zone. We

will be using the contrast ratio and the normalized MSE to quantify the performance of the system, when we
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are changing the precision of the arithmetic operations involving the convolutions between the control filters
and the audio signals. The contrast ratio quantifies the amount of ”separation” between the two zones, and the
normalized MSE quantifies the quality of the resulting audio signal in the bright zone.

3 Finite word length FIR filtering in sound zones

The convolutions described by Equations (1) and (2) can be separated into two stages. In the first stage, the
audio signal {u[k]} is convolved with the control filters {w(?)}, and in the second stage the filtered audio signal

is played out and will thereby be convolved with the impulse responses {Bl()m’e)} and {B((im’g)} of the room. In
this work, we will focus on the first stage, where we will modify the filter coefficients {w(®)} as well as the
convolution operator x in order to model the effect of using finite precision arithmetic. The filtering operations
in the second stage are not affected by the modifications in the first stage.

3.1. Quantization of filter coefficients

Operating in a finite word length environment where signed arithmetic operations are needed, several potential
number representations may be considered, ranging from the simple “’signed magnitude” notation to advanced
representations such as redundant binary number systems. The number representation being used highly impacts
the implementation cost as well as the execution time of the overall application. For instance, the advantage of
a redundant number system is that it can perform addition in a constant time independent of the word length,
the drawback being a significant hardware overhead demanded by multiple bits per digit as well as input/output
converters needed for interfacing against a traditional binary number representation.

Since our primary aim in this work is to investigate the numerical robustness of sound zones operated in a finite
word length environment, our experiments will be conducted using a d-bit 2’s complement fixed-point number
representation which easily handles signed arithmetic operations in the dynamic range [—1; 1], but which at
the same time may be far from optimal in terms of implementation cost and execution time. We will address
specific hardware implementation issues in a future work.

Preparing the control filters for fixed-point execution, we initially quantize the V,, coefficients of each of the
L filters. To do this, we scale all coefficients by the same factor so that all coefficients are within [—1, 1].
Specifically, let w(©) € RNw denote the impulse response of the ¢-th filter. Then let ¢, = maxy \u’)(e) [7]], where
w©[j] denotes the j-th element of the vector w(*), and | - | denotes the absolute value operator. We form the
normalized filters @(®) c[l, and next quantize these filters to word length d > 0 using the following operations:

@) = f" - e)J 27D =0, Ny - 1 (5)
l
for¢ =1,..., L, where |-| denotes rounding towards the nearest integer from below, e.g., | —0.6| = —1, and

|0.6] = 0. Multiplying by (1 — €), where 0 < ¢ < 1 is a small positive constant, guarantees that all the filter
coefficients are in the range [—29~1,29~1 — 1] before being quantized to nearest integer. For the special case
where d = 0, we simply replace the filters by a unit impulse, i.e., W) = [1,0,...,0]7, V(. Thus, in this case
we do not control the sound field in the sound zones but simply play out the audio without any filtering taking
place (except the convolutions of the audio with the RIRs).

3.2. 2’s complement fixed-point arithmetic

In order to conduct the control-filter computations, i.e., multiply-accumulate operations reflecting as accurately
as possible a real-time hardware execution, we initially design bit-true 2’s complement Matlab-based multiplier
and adder simulation models. We therefore briefly introduce the underlying mathematical fixed-point operations
applied in these models which are next implemented with appropriate input/output converters such that their
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input operands and the resulting product/sum can be represented as floating point numbers, [12].

Radix-4 multiplication Given two d-bit numbers X and Y being the multiplicand and the multiplier, respec-
tively. Expressing Y as a 2’s complement number, which represents the individual filter coefficients w()[;],
we use a notation where the Most Significant Bit (MSB) is indexed as 0. Normally, the MSB is indexed d — 1,
but in this FIR filter context where we scale the input signal (X') and the coefficients (Y') to the dynamic range
[—1; 1], the 0-indexing of MSB is a notation which conveniently is used to express Y in binary notation, and
thus the product P as:

d—1 d—1
Y=-y+) 527, P=Y X=—y-X+) (y;-X) 27, (6)
j=1 j=1

where the fixed point is located immediately to the right of the sign bit yg.

From Equation (6) we see that the product consist of d partial products which are individually left-shifted and
added, starting from the Least Significant Bit (LSB) end. In order for this to work, appropriate sign-extension
has to be enforced prior to the addition. Since X and Y both have format Q1.d-1, the product is format Q2.2d-2
which due to two identical sign bits (in case of no overflow) is easily adjusted into format Q1.2d-1 by a logical
left shift. Now, using the 2’s complement notation and the assumption that d is an even number (identical
arguments can be derived for d odd), the multiplier is parted into two sums represented by the odd and the even
indices, respectively;

d—1 d—2
Y=—y+ > y-27+ Y g2 (7)
j=1,0dd j=2,even

Adding and subtracting the “even indexed sum” on the right-hand side of Equation (7), it can be rewritten as

d—1 d—2 d—2
Y=—gp+ > 27+ > g2 -2 3 g0k ®)
j=1,0odd j=2,even j=2,even

If'Y is appended at the LSB-end with a bit y,4, which is identically equal to 0 and therefore does not alter the
numerical value of Y, the two even indexed sums” can now be reformulated in terms of two identical but "odd
indexed sums”;

d—2 ' d—1 ‘ d—2 ' d—1 '
Z yj - 27 = Z yj1-27 and —2. Z yj 270 = —2. Z yio1-277 + 0. (9)
j=2,even j=1,0dd j=2,even j=1,0dd
The multiplier Y, and hence the product P can therefore be written as:
d—1 . d—1 '
Y = Z (yj+yj+1—2-yj_1)'2*j, P = Z (Zj-X)‘27] (10)
J=Llodd j=1,0dd
where
zj = Yj +yj41 — 2 yj—1;2 € {0, 1, £2}. (11)

From Equations (10) and (11) it is concluded that P is the sum of d/2 left-shifted and sign-extended partial
products (PP) which can take on the values {0, X, £2X } depending on the bit pattern of three consecutive
bits of the multiplier Y, starting with yg at the MSB-end.

In the general case, where d can be even or odd, we obtain:

—

e

-
|

1 r41-1
iy 1 .
Y= ) (aertyzea—20yp) 273, P=o 37X g7 (12)
j=0

.
o
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From Equation (12) it is easily noticed that the PPs are individually shifted two bit positions against each other,
i.e., Radix 4, and similarly that the final product is obtained only after a 1-bit right shift of the sum of the [g}
PPs which are all represented as sign-extended 2’s complement numbers. In our model, the PPs are calculated
sequentially (despite that a parallel computation is possible in a dedicated hardware configuration) and next
converted into a floating point representation before they are consecutively added. Since the PPs initially are
represented as fixed-point numbers, conducting the additions using floating point arithmetic significantly sim-
plifies the simulation model but does not alter the accuracy, i.e., the resulting floating point product is generated
with an accuracy equivalent to a 2’s complement number in Q1.2d-1 format. The word length d is an adjustable
parameter in our model enabling experimentation with varying accuracy of the calculated products.

2’s complement addition One of the most unique features of 2’s complement numbers, as compared to other
more straight forward number representations like for instance the signed magnitude representation, is the pos-
sibility to perform signed addition (and thus also subtraction) directly on the two input operands. Due to this,
contrary to multiplication, there is no need to distinguish between algorithms for signed and unsigned addition.

Consequently, a traditional d-bit Ripple Carry Adder (RCA) or a Carry Look-ahead Adder (CLA), eventually
extended with overflow detection, can be opted for in a signed signal processing context like the one addressed
in this work. While both of these two adder concepts perform a numerically exact computation (for a given
word length d), the CLA introduces a mechanism which in a parallel manner pre-calculates the carry at several
selected bit positions throughout the total word length, thus reducing the worst case propagation delay, i.e.,
the overall execution time, as compared to an RCA of same word length. The overhead however, being a
significantly higher complexity as well as an irregular circuit layout.

Since in this work we want to prepare for the least complex hardware topology, the obvious choice for a 2’s
complement adder simulation model therefore is the d-bit RCA which generates the sum of two Q1.d-1 numbers
by performing bit-wise iterative addition of the operands, starting from the LSB-end. At the same time, the RCA
performs addition of carry information from the lower consecutive bit position, using a 3-2 adder compressor
at each bit position. In this work, the carry into the LSB is defined identically equal to 0.

Our RCA-based simulation model takes as input two floating point operands which in the FIR filter context are
the individual filter tap products and the accumulated sum, respectively. Using floating point number represen-
tation for the inputs makes it easy to interface against the products generated by the multiplier. Furthermore,
from a numerical perspective the product accumulation can be conducted in any precision, i.e., single-, double-
or overflow precision, since internally our model implements a d-bit RCA where the word length is an adjustable
parameter which allows experimentation with varying addition accuracy.

For all FIR control filters we conduct appropriate numerical scaling of the input signal in order to avoid an
overflow condition at the output variable, and similarly we perform online check for any overflow internally
in the structure. For this reason no guard bits are needed in our adder model. The adder thus produces a sum
which initially is derived in Q1.d-1 format, and next converted to and presented at the output as a floating point
number with an identical accuracy.

4 Simulation study

In this section, we consider an experimental setup having L = 8 loudspeakers and two sound zones, a bright
and a dark zone. We let the audio signal {u[k]} be a low-frequency 50 — 600 Hz band-limited white Gaussian
noise signal sampled at 1.2 kHz. The audio signal is filtered by the L FIR control filters {w () },¢ =1,..., L,
before being played out. To design the control filters, we use the design method presented in [13]. We use real
measured RIRs {ﬁ(()m7£)} and {E&m’g)} for the design of the control filters and when simulating the resulting
performance. The room was of size 7.00x8.12x3.00 meters. Each control filter has length N,, = 100. An
example of one of the filter impulse responses is shown in Figure (1) (left), and similarly an example of one the
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Figure 1: Left: Example of one of the control filters. Right: Example of one of the RIRs used
when evaluating the resulting performance of the sound zones.

Table 1: Contrast ratio in dB as a function of the word length of the adder, and for fixed 8 and 16
bits multipliers. The contrast ratio when using 32 bits adder and multiplier is 23.09 dB.

Multiplier / Adder 6 bits 8 bits 10 bits 12 bits 14 bits
16 bits 15.08dB 20.56dB 22.72dB 23.06dB 23.09dB
8 bits 1495dB 20.67dB 22.72dB 2298dB 22.98dB

RIRs is shown in Figure (1) (right).

For reference purposes, we initially calculate i) the normalized MSE, and i) the contrast ratio using a 32 bit
word length, both for the multiplier and for the adder in the control filters. We obtain reference values equal to
-9.89 dB and 23.09 dB, respectively, for the two performance metrics.

We next demonstrate the effect of replacing the 32-bit arithmetic operations by shorter word length multipli-
cations and additions. Figure (2) (left) shows the normalized MSE as a function of the adder word length for
different multiplier word lengths, and similarly Figure (2) (right) shows the corresponding acoustic contrast
ratios. Table 1 shows the contrast ratio as a function of the adder word length, and for a fixed 8 and 16 bits
multiplier.

The results shown in Figure (2) represents an average performance covering all frequencies. To better illustrate
the impact of finite-precision arithmetic on the resulting sound zones, we therefore introduce Figures (3) and
(4) which show the resulting Power Spectral Densities (PSD) for the bright and dark zones, respectively.

These experiments illustrate several interesting performance features of sound zones operated in a reduced
numerical accuracy environment. First and foremost we observe a significant difference among the bright and
the dark zone. The bright zone is mostly unaffected by a reduction in the multiplication accuracy given a fixed
reference adder word length, Figure (3) (right), the exception being the top-most 50 Hz of the frequency range
where a 4-bit multiplier word length leads to an approximately 15 dB degradation of the sound field as compared
to longer multiplier word lengths.

Maintaining the reference multiplier word length for a reduced adder accuracy, we observe a somewhat more
sensitive bright zone in the upper 100 Hz of the investigated frequency range when the adder word length is
decreased below 10 bits, Figure (3) (left). Particularly, despite that the adder word length seems to have no or
very little impact in the center part of the frequency band, an up to 20 dB degradation is discovered at the band
edges when applying a 4-bit adder.

For both of the above discussed situations we explain the increased sensitivity in the upper part of the frequency
band by the following considerations. All control filters are implemented as ordinary transversal filters, i.e.,
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Figure 2: Left: Normalized MSE as a function of the adder word length for given multiplier word

lengths. Right: Acoustic Contrast Ratio as a function of the adder word length for given multiplier
word lengths.
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Figure 3: Power spectral density of the bright zone. Left: 32-bit reference multiplier and shorter
word length adder. Right: 32 bit reference adder and shorter word length multiplier.
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Figure 4: Power spectral density of the dark zone. Left: 32-bit reference multiplier and shorter
word length adder. Right: 32 bit reference adder and shorter word length multiplier.
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the tapped delay line is storing the input samples u[k — j], j = 0, ..., N, — 1, represented as 2’s complement
numbers, all scaled to comply with the dynamic range [—1; 1[. If the frequency of the input signal is increased
(for a fixed sample frequency), the probability for changing the MSB part of the word, which is a representation
of the sign, is similarly increased among consecutive input samples. Consequently, for a bit j in the MSB part
of the word, the temporal correlation among consecutive samples, given as

pj o< Elu;lklu;k — 1]] (13)
therefore decreases, which indicates an increased transition probability, [14].

After all N,, samples in the delay line are multiplied with their corresponding constant filter coefficients, the
individual products from the FIR taps similarly show decreased temporal correlation for the bits at the MSB
end when the input signal frequency becomes higher. When the word length in the adder chain is reduced, a
proportionally larger part of the operand bits are used for sign information, and thus fewer bits are available to
represent fractional accuracy. In a ”high frequency” scenario, where the sign information becomes increasingly
more important, the accuracy of the product summation therefore suffers from proportionally fewer fractional
bits, thus impacting the overall numerical quality of the sum. This set of arguments also explains why the sound
zone application is less sensitive towards a reduction in the multiplier word length as compared to the adder
word length.

Concerning the dark zone, we generally found a much more pronounced dependency of the arithmetic accuracy.
We explain this mainly by the fact that creating a dark zone is significantly more complicated as compared to
generating a bright zone. In the bright zone, the constructive interference increases the sound pressure level by
a certain factor depending upon the number of sources. On the other hand, in the dark zone, ideally there is zero
sound pressure due to a complete cancellation of all the direct and reflected sound paths from the L loudspeakers.
This is of course not possible in practice and our simulations also illustrate that the sound pressure level is not
zero in the dark zone. For the dark zone scenario we therefore also discover exactly the same phenomenons in
the "high frequency” regions as discussed above for the bright zone. Moreover, there are several other important
observations associated with the dark zone.

Consider first the fixed reference adder scenario, Figure (4) (right). Here we observe an interesting behaviour,
namely a somewhat inconsistent PSD relation between the reference multiplier and the shorter word length
multipliers. Normally, one would think that a word length reduction leads to a consistent performance degrada-
tion, but for several frequencies in the mid-range region we see the opposite effect, particularly for 6- and 4-bit
multipliers. One possible explanation might be that the white Gaussian noise input signal, due to its random
nature combined with a word length dependent accuracy reduction in the FIR filter tap products, which next
are to be added, enables an enhanced “self cancellation” effect of the direct and reflected sound contributions at
some arbitrary frequencies — in several cases up to 15 dB better than the reference. Overall however, the PSD
obtained by the 32-bit reference and the lower word length multipliers agrees, although with a generally higher
fluctuation throughout the entire frequency range as compared to the bright zone scenario.

Additionally, the experiments indicate that significant degradation, in comparison to the 32-bit reference mul-
tiplier, only occurs for a multiplier word length less than 8 bit which is therefore considered as the lower bound
word length for the multiplier. This observation complies with result also illustrated in Figure (2).

Finally, for the fixed reference multiplier scenario, Figure (4) (left), we observe similar behaviours as already
discussed. One exception though being the pronounced full-range performance degradation discovered for a
continuous adder word length reduction. Not only does the PSD degrade with up to 30 dB in the high end of
the frequency band, but throughout the entire frequency band the degradation, except for a very narrow band
around 180 Hz, never falls below 10 dB (using a 4-bit adder). Similarly, we observe a very distinct, almost linear
performance degradation when the adder word length is decreased in 2-bits steps. Deviation from the 32-bit
reference adder becomes pronounced for a 10-bit and lower word length adder, and similarly more pronounced
for increased frequency. These findings clearly indicate that the dark zone is specifically sensitive towards the
adder word length which we explain by the same set of arguments as introduced for the bright zone with fixed
reference multiplier.
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5 Conclusions

In order to prepare recently developed Sound Zone Control algorithms for implementation in a real-time fixed-
point reconfigurable hardware environment with the possibility for individual word length selection of the arith-
metic units — and thus potential power-, time-, and area savings — we investigate the sound zone performance as
related to the necessary multiplier- and adder word lengths. Using 2’s complement based Ripple Carry Addition
and Radix-4 Multiplication, we demonstrate in terms of 7) Normalized Mean Square Error, ¢7) Acoustic Contrast
Ratio, and 7i7) Power Spectral Density, in the bright as well as in the dark sound zone, that the multiplier- and
adder word lengths can be reduced to 8 bit and 12 bit, respectively, when compared against a 32-bit reference
word length.

For these specific word lengths, we conclude that it is possible to maintain a reduction in the ratio of sound
pressure levels between the bright and the dark zones of at most 0.1 dB which is considered sufficiently small
in order not to disturb the overall sound perception individually in the two zones.

Furthermore, our studies have clearly demonstrated that the dark zone is difficult to construct when being op-
erated in a reduced word length scenario. Maintaining a destructive interference, in a given acoustic/physical
environment, requires a certain amount of arithmetic operations, i.e., a necessary order of the control filters
being executed with a sufficient numerical accuracy. We demonstrate that in particular a reduced adder word
length impacts the possibility to maintain a high fidelity dark zone, which on the other hand is significantly less
sensitive to modification of the multiplier word length.

The constructive interference to be established in the bright zone is also significantly less sensitive to word length
minimization, although we for this zone conclude that a reduction of the adder word length has a significantly
more negative impact on the overall performance as compared to a similar reduction in the multiplier word
length.

In terms of the frequency related performance, we have demonstrated that the dark zone performance is impacted
essentially in the complete 50 — 600 Hz frequency band which has been subject for our investigation. Although
the bright zone performance is also frequency dependent for varying word lengths, we conclude that this can
be observed only to a less extent as related to PSD degradation and frequency range. Despite that a shortened
adder word length reduces the bright zone performance, we found that this occurs for very limited bandwidths,
primarily in the upper part of the frequency band.

Our work has shaded some previously unknown light onto the way Sound Zone Control is influenced by and
potentially could be operated optimally in a reconfigurable hardware fixed-point environment. Our results are
therefore of particular importance when it comes to practical realization of this emerging audio technology. De-
spite our many new discoveries, there are still various unsolved problems and questions needed to be answered.
In our future work we therefore focus on topics related to the mapping of the control filters onto a real-time hard-
ware platforms. In particular, we will address how essential design metrics such as execution time and power
consumption potentially can be reduced when the fixed-point multipliers and adders are replaced by arithmetic
units which perform their calculation approximately, [15]. Our work has shown that the sound zone application
allows substantial word length reductions, as compared to a 32-bit reference, and therefore an interesting study
is to investigate how arithmetic units, which introduce a certain amount of approximation for a given word
length, can be operated in sound zones in order to minimize time- and power overhead in a real-time dedicated
hardware architecture.
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