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Introduction

The reverberation time represents one of the most impor-
tant measures when describing the acoustics of a room.
A well established method for calculating reverberation
times is based on fitting a linear regression to a certain
range of a logarithmically plotted energy decay curve
(EDC). For the validity of this method, the given EDC
must show a single sloped behavior before dropping be-
low the noise level. Several deviations from this require-
ment have been observed since the late 1950s [1, 2], yet
only one updated method for calculating the reverbera-
tion time for coupled spaces has been proposed by Xiang
in [3]. However, single volume spaces can exhibit a multi
exponential EDC as well.
This work deals with the search for new methods to ex-
tract decay times from a given energy decay curve, im-
proving the commonly used linear regression approach.
Three different approaches are considered, with the fol-
lowing three goals aiming towards a more accurate and
reliable result:

• Adaption of the underlying model, such that decay
curves containing multiple decay components can be
evaluated.

• Robustness of the algorithm

• Minimizing computation time

Methodologies

VARPRO
The Variable Projection Algorithm (VARPRO) pre-
sented by O’Leary & Rust [4] is a revised version of the
1973 presented method by Golub and Pereyra [5]. This
approach assumes that the underlying model is a linear
combination of nonlinear functions. Since the introduc-
tion of this method, a wide variety of applications were
found and summarised in [6]. The simplicity of using
a sum of exponentials as the underlying model, its fast
convergence and the possibility of implying an additional
linear term are the main reasons for choosing this ver-
sion in this acoustical context. Furthermore, O’Leary &
Rust proposed their implementation to be a 21st century
implementation of the variable projection concept using
MATLAB [4].
Considering the problem of a double sloped EDC, we can
describe the underlying model as

y(t) = c1e
α1t + c2e

α2t = η (α, c, t) , (1)

with y(t) denoting the experimental data. In this special
case the parameter c would appear linear, which means
that for a given set of α the optimal vector c can be found

using a linear least squares algorithm. Thus, defining the
nonlinear problem as

min
α,c
||y − η (α, c) ||22, (2)

it can be rewritten as

min
α,c
||y − η (α, c(α)) ||22 (3)

Exploiting this property, Golub and Pereyra called this
a separable least squares problem and developed the
variable projection method to solve it [5].

RILT
The Regularized Inverse Laplace Transform program
(RILT) [7] is an emulation of the program CONTIN,
which was proposed by Provencher in [8] as a general
purpose constrained regularization program for inverting
noisy linear algebraic and integral equations. The data
obtained in various experiments represents some linear
integral transform of the desired measure. In room acous-
tics, a measured EDC can be regarded as the Laplace
transform of the present decay time distribution [1]. The
inversion of such data then is an ill-posed problem with
an infinite set of solutions. Thus, a standard inversion
principle can not be applied and statistical regularization
methods have to be used [8]. The RILT algorithm tries to
find an optimal solution restricted to constraints. Prior
statistical knowledge and the principle of parsimony in-
fluence the regularizor. This approach increases the ac-
curacy by decreasing the amount of possible artefacts
caused by the experimental noise [9]. Yet the inverse
problem is still ill-posed and the obtained solution re-
mains one of the infinite set of possible solutions within
experimental error.
Considering the decay time distribution as the desired
measure, and the EDC the indirectly obtained data, the
problem can be stated as

yk =

∫ b

a

Kk(τ)Φ(τ)dτ + nk, (4)

where yk represents the measured EDC, Kk(τ) the kernel
of the Laplace transform, Φ(τ) denotes the distribution
of decay times τ and nk describes the experimental noise.
After using numerical intergration to transform (4) into
a system of linear algebraic equations RILT applies two
different approaches for finding the ”best” solution to the
ill-conditioned problem:

• Constraints: By having some absolute prior knowl-
edge about the solution a large number of possible
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solutions can be eliminated. Knowing, that the cal-
culated EDC must be monotonically decreasing and
concave one can restrict the decay time destribution
to being non-negative.

• Regularization based on the principle of parsimony:
This principle by definition searches for the simplest
solution, which can be understood as looking for
a solution with the least additional information
to the one given by the constraints. As a result,
the outcome should imply a minimal amount of
artefacts.

MEDD
The Maximum Entropy Decaytime Distribution tool was
derived from the Maximum Entropy Lifetime Analysis
tool presented in its updated version 4.0 by Shukla in [10],
which was developed to extract lifetimes from a lifetime
distribution obtained in a positron lifetime experiment.
Regarding an EDC as a lifetime spectrum allows the as-
sumption of being able to adapt the given algorithm in a
way that it can be used for the extraction of decay times
from a given EDC.
The underlying model can be considered the same as in
(4), thus the matrix representation resolves as

Y = KΦ +N. (5)

To approach this problem, the MELT algorithm uses a
quantified maximum entropy method. The Maximum
Entropy Principle, first proposed in [11] as a natural con-
nection between information theory and statistical me-
chanics, yields the opportunity of calculating the least
biased estimate for a problem based on the given informa-
tion. This method allows to find an estimate of a positive
additive distribution (PAD) from noisy and incomplete
data based on a Bayesian framework. Knowing a number
of various solutions A, B, C one can then describe them as
conditional probabilities pr(A|D), pr(B|D), pr(C|D). So
if Φ represents a particular solution, one needs the prob-
ability distribution pr(Φ |D) subject to Φ. This is not di-
rectly obtainable from the given dataset D. However, the
reversed conditioning pr(D| Φ) is, which is better known
as the ”likelihood”. Assuming the experimental noise
to be uncorrelated and Gaussian, the probability density
pG(N) with the noise being described as N = D − KΦ
would resolve as

pr(D|Φ) = pG(N) = pG(D −KΦ) =

=

Ndat∏
j=1

1√
2πσ2

exp

 1

2σ2

[
dj −

Nmod∑
µ

kjµφµ

]2, (6)

the connection to the desired probability can be found
using Bayes theorem

pr(Φ|D) =
pr(Φ)pr(D|Φ)

pr(D)
, (7)

with pr(D) being a normalising factor to ensure that the
sum of the probabilities of all possible solutions is equal

to one and, therefore, assuring the presence of a prob-
ability density. Considering the pr(D|Φ) as given and
pr(D) being a normalising constant, the only remaining
unknown term is pr(Φ), which stands for the ”prior prob-
ability” distribution of Φ. According to [12] the pointwise
probability

p(φ|m,α) ∝ exp (αS(φ,m)) (8)

reflects the most important part of the quantified en-
tropic prior. The two parameters m and α represent
a model for φ and an inverse measure of the expected
spread of values of φ about m. The function S(φ,m) de-
notes the Shannon-Jaynes entropy [11]. Thus, the point-
wise joint probability distribution is

pr(φ,D|m,α) =
( α

2π

) r
2

∏ 1√
2πσ2

exp

(
αS(φ,m)− 1

2
C(φ,D)

)
. (9)

Since the Shannon-Jaynes entropy is a convex function
with negative definite curvature and C(f) positive, the
posterior probability pr(φ|m,α,D) has a unique maxi-
mum at

α
∂S

∂φ
− 1

2

∂C

∂φ
= 0 at φ = φ̂ (10)

The obtained distribution φ̂ then is the single most prob-
able PAD. The choice of a well guessed kick-off solution
is essential as it has a stabilizing and regularizing effect.
Furthermore it shortens the time needed to converge. For
this particular reason the algorithm uses a general opti-
mal linear filter [13] to compute a good kick-off solution.

Experimental Results

To evaluate the results obtained using the different al-
gorithms, a experimental data set from a reverberation
room measurement was selected. As a representative the
f = 500Hz octave band has been chosen. The resulting
fitting curves as well as the calculated residuals are pre-
sented in Fig.1. Clearly visible, the residuals within the
time range of 0s to 0.4s can be linked to the fluctuation
in the EDC, therefore the progression of the residuals as
a function of time for the different algorithms follows a
similar behavior. In the later part (0.4s - 1.3s), only the
trend of the VARPRO and the RILT algorithms match.
The MEDD algorithm for this section achieves a better
result, which is visible in the fitting curves as well as the
residuals. As a measure for the accuracy of the obtained
fitting curves, the sum of residuals is presented in Tab.1,
aside the calculated reverberation times and their corre-
sponding intensities.
Figure 2 shows the obtained decay time distribution
for the three different algorithms. As described in the
methodologies section, the VARPRO and the RILT algo-
rithm result in discrete decay times, thus, the resulting
”distribution” for the VARPRO algorithm only contains
the two evaluated decay times. The RILT distribution
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Figure 1: Comparison of (black) the measured and estimated EDCs and (blue) their corresponding weighted residuals [Mea-
surement: 500Hz, 20 diffusors, 10.8m2 porous absorber]

represents the predefined decay time grid and the corre-
sponding evaluated intensities. With MEDD a contin-
uous decay time distribution is obtained. In all three
computed distributions, the second peak is higher. This
results represents the fact that the time range, where the
initial decay time T1 is dominant is shorter. The slightly
higher estimated T2, obtained using VARPRO and RILT
also reflects the deviation from the measured EDC during
the time interval of 0.4s up to 1.4s.
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Figure 2: Comparison of the computed reverberation time
distributions [Measurement: 500Hz, 20 diffusors, 10.8m2

porous absorber]

VARPRO RILT MEDD
T1 in s 1.22 1.12 0.78

Int of T1 0.20 0.21 0.11
T2 in s 2.54 2.44 2.40

Int of T2 0.80 0.79 0.89∑
Res 0.0477 0.0390 0.0264

Table 1: Reverberation Times T1 & T2, their corresponding
intensities and the sum of residuals

Considering the measurement from a reverberation
chamber, the number of peaks present in each octave
band was computed using MEDD. Figure 3 shows a com-
parison of the number of slopes present in an empty re-
verberation chamber. For each octave band the peaks
were computed and plotted neglecting their correspond-
ing intensity. The x-axis represents the decaytime grid
used by MEDD. The corresponding reverberation time
can be computed using

τ = exp

(
const +

i

increment

)
· 13.8 · down

fs
, (11)

where const = 2, i = 1 : 1000 and increment = 200 rep-
resent decay time grid variables defined for the compu-
tation process, down = 100 and fs = 48000 represent the
downsampling factor and the sampling frequency respec-
tively. This method allows to easily visualize the number
of slopes present in a certain frequency band. For the
chosen example, no absorbing specimen and no diffusors
were place inside the reverberation chamber. In none of
the evaluated frequency bands (125Hz to 4kHz) a single
sloped EDC could be detected, and thus the requirement
of having a single slope for deploying the linear regression
method is not fullfilled. Considering the introduction of
an absorbing specimen, this effect will be increased due to
the non-uniform distribution of absorption in the room.
Further, the expected trend towards lower reverberation
times at higher frequencies is visible.

Discussion

The adapted version of the VARPRO algorithm offers a
time efficient alternative to fitting a linear regression to
the data. Previous to triggering the calculation process,
the number of slopes present in the given decay curve has
to be entered. This fact and the loss of the robustness for
more than one decay component make this algorithm a
weak choice. If only one exponential term is fitted to the
data, the solution represents an accurate fit of the first
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Figure 3: Number of peaks/slopes present in a MEDD
evaluation of a reverberation chamber measurement with-
out absorbing specimen and diffusing elements [Measurement:
500Hz, 0 diffusors, no absorbing specimen]

slope. As a result, VARPRO can be used as a tool to
compute an estimate for Tearly from a given EDC. Con-
sidering the weaknesses of the VARPRO algorithm, the
second adapted algorithm offers the possibility to fit a
sum of exponentials to the data, without the handicap of
having to know the number of present slopes.
The RILT algorithm offers a great tool to obtain the cor-
responding intensities for a given decay time grid using
a nonlinear least squares fitting approach. The compu-
tation time increases exponentially with the number of
grid points which decreases its potential when investi-
gating a wider decay time distribution. Additionally, the
obtained intensities as a function of the decay times can
be regarded as a decay time distribution.
The results gained using MEDD underline the expecta-
tion of the existence of multiple sloped decay curves in
a reverberation chamber. More than one peak in the
obtained decay time distributions is visible for most of
the investigated datasets. The novel method for extract-
ing decay times from a given measured EDC in room
acoustics represents a time-efficient tool to evaluate more
than a single slope. Furthermore, the results obtained by
MEDD could be used for the calculation of the absorp-
tion coefficient and the development of a new measure
for the multiple slope effect.

Conclusion

This work presents a contemporary study of algorithms
to analyze the decay times present in a given EDC. Based
on the assumption of the EDC being the Laplace trans-
form of the decay time distribution, the MEDD algo-
rithm was implemented to use a quantified maximum
entropy method for estimating the inverse Laplace trans-
form from the EDC, yielding the decay time distribution.
The results showed, that for a measurement done in a re-
verberation chamber, the EDC in most cases exhibits a
multiple sloped behavior.
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