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Introduction

Microphone array techniques have proven their worth for
the localization and characterization of acoustic sources
in various application areas such as acoustic measure-
ment technology, medical ultrasound or speech signal
processing. When microphone arrays are used in acoustic
measurement technology, the primary goal is to identify
and quantify the causes of sound. However, a low dy-
namic range often makes it difficult to assign the il-
lustrated contributions in the conventional beamforming
map to their causes and to identify the source mechan-
isms. Therefore, different methods have been developed
in the past which differ greatly in terms of accuracy, com-
putational effort and robustness against disturbance in-
fluences.
At the same time, a large number of research projects
in the field of supervised machine learning for image pro-
cessing have shown that it is possible to recognize various
types of objects and its properties on the basis of images.
In this contribution it was therefore examined whether
the use of convolutional neural networks (CNN) is suit-
able for the identification of point sources using the con-
ventional beamforming map as a visual representation.
Synthetically generated data from single sound sources
were used for this purpose.

State of the art

Convolutional neural networks (CNN) according to
LeCun et al. [6] have already been investigated as an
alternative to existing beamforming algorithms in other
research projects, especially in the field of ultrasonic re-
search.
Reiter et al. [7] showed that a reliable estimation of
different point source locations is possible on the basis
of photoacoustic images. In addition, the authors dis-
covered that multiple sources can be identified within
an image, even if it was trained exclusively with single
sources. This approach was further developed by Allman
et al. [1]. By using methods from object recognition
and object classification, it could be shown that pseudo-
sources which result from reflections on structures and
several real sources can be reliably differentiated.
The results from the literature mentioned in this section
are first approaches showing the promising potential of
neural networks as methods for sound source localization.
At the same time there are strong restrictions. So far,
in all the approaches mentioned, only conclusions have
been drawn about the position of possible sources, but
not about their strength.

Methodology

Since extracting spatial features from images is an ad-
vantageous ability of CNNs, it is conceivable to find the
true source distribution outgoing from the conventional
beamforming map B ∈ Rm×n, calculated with delay-
and-sum beamforming in the frequency domain. There-
fore, a CNN represented as a function Fcnn is trained,
which maps from the conventional beamforming map to
a vector which holds the predicted source position and
strength Fcnn : Rm×n → R3

Fcnn(B) := y, (1)

with y := [x1, x2, p
2] ∈ R3. Due to the unknown quantity

of sources in a map, an iterative application of the func-
tion with an intermediate step of removing the compon-
ents belonging to the approximated source would be ne-
cessary if multiple sources are present. But since the feas-
ibility of the approach is investigated, only single sources
are considered here.
For the optimization of the trainable variables of the net-
work in training mode, an objective error function L is
necessary, which measures the error of the network on a
specific input sample. The mean square error was selec-
ted and calculated for strength and position as follows:

L =
1

2

2∑
i=1

(xi − x̂i)2 + (p2 − p̂2)2. (2)

The hat is denoting the true values. However, this type
of error is not suitable to estimate the performance of the
network as an inverse beamforming method. For example
the loss value for a given input does not explain if it is
caused by a wrong positioning or by a wrong estimation
of the amplitude or both. Therefor in the evaluation of
the model the distance error and the level error are used
for monitoring the performance of the model.

Edist = ‖x− x̂‖ (3)

Elevel = |Lp − L̂p| (4)

Model Architecture

The choice of the architecture has some restrictions com-
pared to the application of neural networks in usual im-
age processing tasks. Namely the input-image size is
different for beamformed data in comparison to normal
images, which are normally 256 × 256 pixels. As an ex-
ample, Herold and Sarradj [4] used for comparison of
different beamforming-methods a grid of the size 51×51.
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Table 1: Network architecture of the used residual network based on He et al. [2, 3]

Block Dimension input Dimension output No. kernels Size No. weights

ConvLayer 51× 51× 1 51× 51× 26 26 3× 3 234

Residual Layer 1 51× 51× 26 26× 26× 26

26

26

× 3

3× 3

3× 3

× 3 37180

Residual Layer 2 26× 26× 26 13× 13× 52

52

52

× 3

3× 3

3× 3

× 3 135200

Residual Layer 3 13× 13× 52 7× 7× 104

104

104

× 3

3× 3

3× 3

× 3 540800

AvgPoolLayer 7× 7× 104 104× 1 1 7× 7 -

Regression Layer 104× 1, 104× 1 334× 1, 334× 1 - 334 nodes 35070, 35070

Output Layer 334× 1, 334× 1 2× 1(x), 1× 1(p2) - 3 nodes 670, 335

Since many of the developed convolutional neural net-
work models for image recognition tasks perform a spa-
tial subsampling starting from the input data, a too small
input image can not be processed by these networks. As
a requirement the model architecture should be applic-
able also to smaller images. For this reason, a residual
neural network invented by He et al. [2, 3] is used. Beside
the successful application for image recognition tasks, it
has already been used for processing of tiny images [2],
e.g. the CIFAR-10 data set with a dimension of 32× 32
pixels.
Table 1 shows the general architecture of the network.
This initially consists of a convolutional layer. Then, the
input feature map is processed by different residual lay-
ers. Every residual layer reduces the dimension of the
input feature map by half. After the feature maps have
been reduced in size, an average pooling layer follows,
which averages the output feature maps of the last re-
sidual layer. A single vector remains, which is linked to
the output of the network by a corresponding regression
layer. This layer processes the values for the position
x := [x1, x2] and strength p2 separately in two parallel
fully-connected hidden layers with 334 nodes. The out-
put values of the hidden layer have not passed through
a nonlinear function. Thus, the regression layer corres-
ponds to a simple linear transformation. The structure of
the regression layer was determined by a random search
experiment.
Apart from the appended regression layer the architec-
ture is similar to the one introduced by He et al. [2] on
the CIFAR-10 dataset. The optimized building block in
the residual layers investigated by He et al. in 2016 [3]
with batch normalization and nonlinear ReLU function
before each weight layer was used.

Data set

The synthetic data sets for this contribution are cal-
culated with the Acoular package [9] and are based on
the work of Herold and Sarradj [4]. The properties are

shortly explained in the following.
A virtual microphone array consisting of 64 sensors is
used. This array is focusing an area as regularly-spaced
rectangular grid laying in a resting, homogeneous fluid.
Herold and Sarradj also used a slight jitter on the po-
sition of the microphones to simulate realistic measure-
ment conditions. The same was only applied to the data
generated for the test set but not to the data used for
training. In the area of interest, single monopole sources
emitting uncorrelated white noise. The source positions
of the sources in the test data set following a bivari-
ate normal distribution. In contrast, the positions of
the sources in the training data set are sampled from
a bivariate uniform distribution for the following reason.
It is desired that the trained algorithm does not behave
differently in its accuracy depending on the position of
the source. Since the PSF is shift variant, it can not
be assumed that the algorithm can transfer local map-
ping properties within one area to others without explicit
training.
Note that the positions of the simulated sources are
mostly laying in between the grid points, as it is un-
der realistic conditions. The resulting time data at the
microphones are simulated, following the parameters in
Table 4. The CSM is calculated using Welch’s method
with the main diagonal removed. The sound maps are
generated for various third-octave bands covering Helm-
holtz numbers from 1 to 16. Furthermore, steering vector
formulation III according to Sarradj [8] was used as the
transfer function from the individual grid points to the
sensor positions. For the test data set there are 613 dif-
ferent positions of single sources. For the training data
10000 positions were considered. Table 5 summarizes the
data sets with its properties. All sound maps were nor-
malized to a maximum value of 1.

Experimental Settings

During training, 32 random samples were randomly taken
from the training data set and presented to the model in
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Table 2: Environment parameters according to [4]

Environment resting, homogeneous fluid
Array 7 logarithmic spirals, 64 sensors
Focus grid x, y ∈ [−0.5, 0.5], z = 0.5,∆x = 0.02

Table 3: Sound source parameters according to [4].

Source type monopole

Source positions
Training: normal distributed,
Test: uniform distributed

Signals uncorrelated white noise

Table 4: Processing parameters according to [4]

Sampling rate 20 kHz
No. of time samples 512000
Block size 1024 samples
Block overlap 50 %
Windowing von Hann / Hanning
CSM main diagonal removed
Steering vector fromulation 3, see [8]
Evaluation basis third-octave bands
Frequency range Hemin = 1, Hemax = 16

Table 5: Properties of data sets

Properties Training Data Test Data
Sensor disturbance False True
position distribution uniform normal
No. source positions 10000 613
No. third-octave bands 13 13
No. sound maps 130000 7969

each iteration steps. For cross validation, all 7969 sound
maps of the test data set were used to mark the best
state of the model every 500 iteration steps. A train-
ing state was being stored when the loss has improved
over the cross-validation data set compared to the pre-
viously saved training state. A total of 100000 iteration
steps have been performed. For the optimization of the
trainable variables of the network, the Adam optimiza-
tion algorithm [5] with the parameters in Table 6 was
used. The optimization was done on a node of a CPU
cluster consisting of four Intel Xeon CPU E5-2620 v4 (32
CPUs).

Table 6: Training settings

properties values
loss-function L MSE, see eq. 2
No. iteration steps 100000
cross-validation interval 500
cross-validation metrics L, Edist, Elevel
batch size 32
learning rate η 0.0049
β1 0.905
β2 0.772

Results

Training the model took about 27 hours for all iteration
steps. Figure 1 shows the development of the individual
error metrics over the training and cross-validation pro-
cess. The loss function itself provides only little inform-
ation about the success of the optimization in terms of
source characterization. Therefore, in the following only
the development of the level and distance error via the
optimization process will be discussed. The grey curve
shows the mean error over a training batch in each iter-
ation step. The black curve displays the mean error over
the test data set. The vertical dotted line indicates the
training state with the lowest loss value occurred during
cross-validation.
In general, one can see a decaying convergence beha-
viour. Since both errors decrease constantly and the

cross-validation error does not increase, it can be as-
sumed that no overfitting occurred and the global min-
imum was achieved. Regarding the distance error on
the left of Figure 1, both curves show the same tend-
ency of decreasing error magnitude. This shows that
the trained localization ability can be very well gener-
alized to the data from the test data set. With a mean
error of Edist = 0.004, a precision better than the grid-
resolution of ∆x = 0.02 has been achieved. Regarding
the level error on the right in Figure 1, it is noticeable
that the error over the individual training batches indeed
decrease, but this has less influence on the test data set
with ongoing training. However, the average level error
of Elevel = 0.014 dB is still remarkably low.
The training results are confirmed if one considers the
estimates of the model for sound maps from the cross-
validation data set with the lowest and highest occurring
Helmholtz number as examples in Figure 2. The images
2a and 2c show the level representation of the input map
at He = 1 and He = 16. The sound maps 2b and 2d
show the corresponding point sources estimated by the
method as a black dot. By using the trained model, it
is possible to precisely characterize the point source with
a level error significantly less than 1 dB. Moreover, the
estimated location of the source corresponds to the true
position.

Discussion

The proposed method for sound source characterisation
with methods of image recognition shows a promising
potential. The results shown are surprisingly positive for
the following reasons. First, it should be mentioned that
the conventional beamforming map only consists of one
channel representing the squared sound pressure, while
in contrast normal images are consisting of three chan-
nels representing the color values. This means, that the
information content is reduced compared to normal im-
ages. Furthermore an additional challenge is the simil-
arity of the objects with regard to their geometric shape
and the shift variance of the point spread function. How-
ever, this challenge has not turned out to be a problem.
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Figure 1: Development of the individual error metrics about the training process (grey: training, black: cross-
validation). The vertical dotted line shows the iteration step for which the lowest error occurred during cross-validation.
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Figure 2: Examples of the conventional beamforming map (He = 1 (a) ,He = 16 (c)) and the sound map estimations
(He = 1 (b) ,He = 16 (d)) by Fcnn. The grey cross marks the true position of the simulated point source. The level
error is far below 1 dB.

The low level error is not surprising, since the transfer
function used is steering vector formulation III, which
already provides a nearly correct source strength. How-
ever, according to Sarradj [8] the maximum value in the
sound map does not match the correct position. The
more surprising is the high accuracy of the source local-
ization, which exceeds the spatial resolution of the input
data. This fact underlines once again the suitability of
the chosen approach.
The detection of individual point sources does not corres-
pond to any task occurring in reality. Therefore, the next
step is to investigate the method when several sources are
present in the conventional beamforming map. Of partic-
ular interest here is how well, for example, weaker hidden
sources can be detected.
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