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Introduction

In early design stages of aircraft, uncertain design pa-
rameters are very common. Due to continuous investiga-
tion of newer technologies in research, the final design of
the aircraft may differ considerably from its initial pre-
liminary design. Nevertheless, a prediction of aircraft
cabin noise is important in the preliminary design stages
as potential acoustical problems can be detected in these
phases to consider damping measures as early as possible.
The wave-based approaches are used instead of energy-
based methods (which are much faster) as it gives the
opportunity to manage wave-based effects as innovative
passive damping measures, for instance. The input pa-
rameters of deterministic wave-based models, which are
used to predict the cabin noise of different aircraft con-
figurations, are typically not known with high precision.
This may limit the reliability and significance of the pre-
dictions in particular for mechanical models with a high
complexity. To overcome this shortcoming, uncertain-
ties in the input and their effect on output parameters of
the system should be considered in the simulation. By
modelling design parameters as random variables, the de-
terministic reference model is transformed into a proba-
bilistic model and appropriate numerical techniques for
stochastic computations need to be applied [1, 2].

In this contribution, an uncertainty quantification and a
global quantitative sensitivity analysis are applied on the
example of a numerical transmission loss calculation of an
aircraft fuselage section. A non-intrusive surrogate mod-
eling technique is applied in frequency domain to reduce
the computational costs significantly. The convergence
of the problem is investigated by different polynomial or-
ders and different numbers of samples.

Framework of Uncertainty Quantification

The following process is given in literature [3] and modi-
fied to five major steps for the acoustic application. The
consecutive steps are shown in Figure 1 and further elab-
orated in the following sections. The main goal is a global
quantitative sensitivity analysis to understand the effect
of parameter changes on the model’s response. An im-
portant partial result may be a statistical analysis which
gives an uncertain frequency response. For the linear fre-
quency domain analysis, this procedure is applied to each
frequency step separately.
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Figure 1: Flowchart of Uncertainty Quantification [3]

Problem definition

The problem of interest in this contribution is a me-
chanical formulation of the sound transmission through
a double-wall section of an aircraft fuselage. Figure 2
shows the simplified cross-section of an aircraft fuselage
with the modelled section marked by a black line.
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Figure 2: Cross-sectional view of the Aircraft fuselage

The Transmission Loss (TL) is given as

TL = 10 log10

(
Pin

Pout

)
dB (1)

The formula considers the ratio of the incident sound
power Pin to the radiated sound power Pout. As stated
in DIN EN ISO 10140-2 for measurements, the incident
sound power must be calculated without the influence of
the separating component and the radiated sound power
has to be calculated for free field conditions. A plane
wave excitation is chosen for which input power can easily
be calculated by

Pin =
p̃2A

ρc
(2)
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p̃ is the effective sound pressure amplitude, A the excited
surface, ρ the density of the surrounding air and c the
speed of sound on the outer surface. The radiated sound
power is calculated according to

Pout =
1

2

n∑
u=1

Re{pv∗n}∆Au (3)

Here, n patches correspond to the finite elements. ∆Au

is the surface of one patch u and Re denotes the real part.
v∗n is the complex conjugated normal velocity of the inner
panel given by the finite element solution. The Rayleigh
integral is applied to determine the sound pressure p for
each panel (for simplicity, though the panel is slightly
curved).

The generic double-wall fuselage section, shown in Fig-
ure 3, includes the primary outer skin, the inner lining
of the cabin, circular frames and the insulation (see [4]).
The outer skin and the frames are modelled by a clas-
sical shell formulation (Reissner-Mindlin plate & disc),
the material is set to be orthotropic linear viscoelastic.
The inner side of the sidewall panel consists of a sand-
wich structure made of a honeycomb core surrounded by
GFRP and is modelled by a combination of a continuum
and outer shells. The gap between the outer skin and the
inner side is filled with glass wool. Its sound insulation
effect is considered by an equivalent fluid approach. The
model is deterministically solved in the frequency range
of 10 − 1000 Hz with a step size δf = 10 Hz using an in-
house Finite Element (FE) implementation (elPaSo ).
Quadrilateral 9-node elements and 27-node hexahedrons
are applied on the basis of a convergence study.

Figure 3: Discretised model of three sections of the fuse-
lage connected by circular frames

Uncertainty characterisation

Uncertainty represents variability in data and is omni-
present due to manufacturing imperfections or the finite
precision of measurement equipment. In this work, un-
certainty in the specification of parameters of the nu-
merical fuselage section model which leads to uncertain
approximation of TL is considered, which is treated in
a probabilistic setting. Hence, the parameters must be
specified including the name, lower and upper bounds
and the form of the probability distribution [3]. The
distribution can be determined from measurement data

using Bayesian inference. Here, in absence of data, a uni-
form distribution is assumed according to the principle
of indifference or insufficient reason. In table 1, the pa-
rameters chosen to be uncertain in the mechanical model
of the fuselage section are shown. Each parameter has
a ±10% range of uncertainty with a uniform distribu-
tion. A variation of the material parameters is expected
to have an increasing impact on the TL curve with in-
creasing frequencies.

Table 1: Table of uncertain material parameters

No Parameter PDF Unit

1 toutSkin U(0.0027, 0.0033) [m]

2 Ex:outSkin U(6.714, 8.206 · 1010) [N/m2]

3 Ey:outSkin U(4.824, 5.896 · 1010) [N/m2]

4 ρoutSkin U(1458, 1782) [kg/m3]

5 tGFRP U(0.00045, 0.00055) [m]

6 ρGFRP U(1980, 2420) [kg/m3]

7 tFrame U(0.0027, 0.0033) [m]

8 ρFrame U(1458, 1782) [kg/m3]

9 Re(ρglassWool) U(5.175, 6.325) [kg/m3]

10 Im(ρglassWool) U(−1.935,−2.365) [kg/m3]

11 Re(cglassWool) U(115.2, 140.8) [m/s]

12 Im(cglassWool) U(25.65, 31.35) [m/s]

Screening analysis

The number of model parameters that need to be con-
sidered for dynamic models, such as the fuselage sec-
tion, can be high. For such rather complex models, a
screening step or initial qualitative sensitivity test is per-
formed to filter out the less sensitive parameters from
the higher sensitive ones in order to reduce the dimen-
sionality of the problem. The screening step includes
a Design of Experiments (DoE), uncertainty propaga-
tion and a local sensitivity analysis. DoE is a body of
techniques that enable an investigator to conduct bet-
ter experiments, analyse data efficiently and make the
connections between the conclusions from the analysis
and the original objectives of the investigations [3]. Af-
ter performing DoE, uncertainty propagation should be
followed by running the simulation model using the pa-
rameter sample sets that were generated. The twelve
chosen parameters (see table 1) are coarsely varied one-
at-a-time. Assuming these parameters to be independent
from each other, 10 samples in the uncertainty range
using Latin Hypercube Sampling (LHS) are chosen for
each parameter (120 samples in total). The result of
this Morris test is shown in Figure 4. The elementary
effect (ee) is calculated using the mean sum level of vari-
ations and the sum level when no factor is varied, i.e.
ee(X(i)) = f(X(i) + ∆X(i)) − f(X). 6 parameters are
identified, which are underlined in table 1. These param-
eters seem to be more sensitive compared to the others, as
their corresponding points lie farer away from the origin.
A statistical analysis of the model outputs for the cho-
sen parameter set is performed. The parameters chosen
from the Morris test form the 6 random variables of the
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Figure 4: Morris test result for Transmission Loss

random vector (ξ). LHS is used to achieve a better explo-
ration of the sample space (with lower discrepancy). This
way a lower number of samples can be used to emulate
the distribution functions. A Monte-Carlo (MC) analysis
is performed by solving the deterministic systemN = 200
times taking one realisation of RF [ξ1, ξ2, ...ξ6] at a time.
The mean and standard deviation for TL is calculated at
each frequency step ωn. The uncertainty propagated due
to the variation of input parameters for TL is shown in
Figure 5. The TL increases up to around 70 dB towards
the higher frequencies. The frequency response function
(FRF) is consistently shifted slightly towards higher or
lower values which can be seen from the 99% confidence
region. At higher frequencies, the spread of the responses
is around ±10 dB due to uncertain input parameters. In-
stead of a deterministic result of the system’s TL, an area
can be given as FRF, reflecting the uncertain nature of
acoustic problems in early design stages.
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Figure 5: 99% confidence region by MC analysis com-
pared with deterministic FEM solution at nominal values
for TL

Surrogate modeling

If a simulation model such as an acoustical model re-
quires significant computational resources to run, sur-
rogate modeling is used to construct a simple statistical
emulator of the response surface of the dynamical model.
Surrogate modeling is a collection of mathematical and
statistical techniques for an empirical model building.
The empirical model describes the relationship between
inputs and outputs (here: TL) [3]. Once a surrogate
model has been constructed, subsequent analysis can rely
on this inexpensive surrogate model.

Different surrogate models have been proposed in the lit-
erature. Gaussian process models and polynomial surro-
gate models are among the most popular ones. For the
fuselage section, a polynomial approximation based on a
least squares fit (regression) is built. Alternatively, the
stochastic collocation or Galerkin method can be used.
The regression approach collects the MC results from the
FEM solver, which is viewed as a black box function f ,
relating the inputs to the outputs. The generic model
structure of the surrogate approximation is f̂(ξ,a), the
exact shape of the model being determined by the set
of weighting coefficients a. The aim is to estimate these
weights and train the model such that it fits to the out-
put. The surrogate model can be represented by,

Y(ωn, (ξ1, ξ2, . . . , ξ6)) = Z(ξ1, ξ2, . . . , ξ6)a(ωn) + ε, (4)

where ε represents the approximation error, Z ∈ RN×Q

is the Vandermonde-like matrix, a ∈ RQ is the coefficient
vector, Y ∈ RN is the response vector at each frequency
step ωn and Q is the number of coefficient terms in the
polynomial approximation equation. Solving the system
by minimising the residual by least square approach for
finding a yields the following equations

a(ωn) = (ZTZ)−1ZT︸ ︷︷ ︸
=: W

Y(ωn, (ξ1, ξ2, . . . , ξ6)) (5)

a(ωn) = WY(ωn, (ξ1, ξ2, . . . , ξ6)) (6)

For an unbiased estimator, cross-validation technique is
used to divide the sample data set into k randomly chosen
subsets of equal size. One set among them is chosen as
the training set, to estimate the weighting coefficients a of
the surrogate model. The remaining subsets are used to
estimate the goodness of fit by calculating the RMSE and
maximum absolute error (MAE). A generalised RMSE
is the average of RMSE over k training subsets and is
calculated by,

GRMSE =
1

k

k∑
i=1

ε
(∼i)
RMSE (7)

It can be seen in Figure 6 that the accuracy of the approx-
imation increases by increasing the polynomial order.
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Figure 6: GRMSE for the TL approximation by varying
the polynomial order at constant sample size (150)

The error sharply increases in regions of high non-
monotonicity (resonances). The function cannot be ap-
proximated with sufficient accuracy due to this non-
linearity in the frequency domain. Although increasing
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the order of the polynomial can improve the accuracy, it
also increases the computational complexity as the num-
ber of coefficients (Q) in Z increases considerably.

Further, in Figure 7 the GRMSE is shown for different
sample sizes for a constant polynomial order of 3. The
error decreases significantly by increasing the sample size
from the minimum of 84 to higher values. Similar to
Figure 6, the error is not converging to zero. Instead,
the polynomial approximation does not follow the sharp
resonances in the TL curve.
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Figure 7: GRMSE for the TL approximation by varying
the sample size at constant polynomial order (3)

Quantitative sensitivity analysis

Sensitivity analysis expresses how the uncertainty in the
output of a model can be apportioned to different model
input parameters. After the surrogate model is estab-
lished, for the fuselage section, a variance-based approach
is applied to determine the sensitivity of the TL to the
chosen uncertain input parameters. It is realised by
the usage of the Sobol’ indices method. The first-order
(main) index (Si),

Si =
V (E[Y |Xi])

V [Y ]
(8)

measures the contribution to the output variance by a
single model input alone. The total-order index (STi

)

STi = Si +
∑

i≤j≤k

Sij + Sij...k (9)

measures the contribution caused by a model input, in-
cluding both its first-order effects and all higher order
interactions between parameters. The sensitivities are
calculated based on the response of the surrogate model.
If the total-order indices are much greater than the first-
order indices, non-linear interactions between input pa-
rameters can be expected. The result of the total or-
der sensitivity indices for the 6 input parameters of the
fuselage model are shown in Figure 8 over the entire fre-
quency range. At low frequency, a high influence of the
real part of the density of the insulation layer which is
modelled as equivalent fluid can be observed, which is
indicating a sound transmission through the insulation
at lower frequencies. At higher frequencies, the contri-
bution of the outer skin’s density (ρoutSkin) and thick-
ness are dominant over other parameters which indicates
a high influence of the thin outer surface to the sound
transmission.
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Figure 8: Total order Sobol’ sensitivities calculated over
the frequency range for TL

Conclusion and Outlook

A well known methodology for uncertainty quantification
is applied to a mechanical model of an aircraft’s fuselage
section in frequency domain. Model parameter uncer-
tainties are considered to finally quantify sensitivities in
deterministic transmission loss calculations. The statis-
tical results by the MC analysis with a 10 % parameter
uncertainty yields a highly sensitive TL curve, especially
in the higher frequency ranges. A surrogate model is ap-
plied to reduce the computational costs. It is observed
in the frequency domain that the chosen polynomial ap-
proximation is inaccurate in the strongly non-monotonic
resonances. A speed up may be reached by applying
the frequency as an additional (certain) parameter which
results in one single surrogate model for the entire fre-
quency range. The problem of high dimensionality due
to many engineering parameters can be tackled by a con-
sideration of the physically known relationships of the
parameters. Problem-specific parameters as the speed of
sound or the bending stiffness could be considered instead
of primary parameters as the Young’s modulus. Further-
more, sparse grid collocation methods should be used to
improve the approximation.

References

[1] Martin Krosche and Wolfgang Heinze. A robust-
ness analysis of a preliminary design of a cestol air-
craft. Technical report, Institute of Scientific Com-
puting Technische Universität Braunschweig, Ger-
many, 2014.

[2] O. P. LeMaitre and O. M. Knio. Spectral Methods
for Uncertainty Quantification. Springer Verlag, New
York, 2010.

[3] Chen Wang, Qingyun Duan, Charles H. Tong, Zhen-
hua Di, and Wei Gong. A GUI platform for uncer-
tainty quantification of complex dynamical models.
Environmental Modeling and Software, 76:1 15.12,
2016.

[4] Christopher Blech and Sabine C. Langer. Aircraft
cabin noise reduction by means of acoustic black
holes. in Inter.noise, Hongkong, 2017.

DAGA 2018 München

985


