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Introduction

Dynamic binaural synthesis is a common method to
present a virtual acoustic environment (VAE) over head-
phones. For auralization, anechoic audio signals are con-
volved with HRIRs (Head-Related Impulse Responses) or
BRIRs (Binaural Room Impulse Responses) according to
the head orientation of the listener. In the ongoing re-
search project NarDasS (Natürliche raumbezogene Dar-
bietung selbsterzeugter Schallereignisse in virtuellen au-
ditiven Umgebungen, english: ”Natural room-related re-
production of self-generated sound in virtual acoustic en-
vironments”), we developed a system based on dynamic
binaural synthesis to reproduce any self-generated sound
in a VAE[1].
To realize an adequate reproduction, a 32-channel
surrounding spherical microphone array captures the
direction-dependent sound of an acting user. By con-
volution of these captured signals with specific BRIRs, a
binaural room response is synthesized in real-time, and
presented over headphones. The system is designed for a
sound source located in the center of the array. However,
in real life, the user and in particular the sound source
might be slightly off-center. To compensate for this off-
set, the level of the microphone signals needs to be ad-
justed according to the 1/r distance law. This requires
knowledge on the exact position of the sound source.
This work presents the algorithm and C++ implemen-
tation for sound source localization inside the micro-
phone array in real-time. The time differences of arrival
(TDOAs) between the microphone signals are calculated
by a cross-correlation with phase transform weighting,
and a linear equation system is set up. This equation
system is then solved applying the least square method
with QR-decomposition. The calculated position can be
used for level adjustment of the microphone signals.
The paper is structured as follows. First, we give a brief
overview of common sound source localization methods.
Next, we outline the principles of TDOA-based localiza-
tion. Then follows a section about the actual real-time
implementation in C++. Finally, we analyze the localiza-
tion accuracy for several test cases and real-life scenarios
in a technical evaluation and conclude the paper with a
short summary and outlook.

The Microphone Array

A user is surrounded by a spherical microphone array
to capture the self-generated sound. The fiberglass rod
framework of the array has a diameter of 2 meters and

holds 32 Rode NT5 microphones. As described by Arend
et al.[1], the array is constructed based on a pentakis do-
dekaedron. This array geometry results in a microphone
spacing of about 70 cm. The entire structure is set up in
the anechoic room at TH Köln.

Passive Source Localization

Passive acoustic source localization is an important area
of ongoing research and has a wide field of applications.
Human-computer interaction, speech enhancement, or
noise suppression, for example, all require knowledge
about the sound source position. Equally, non-acoustic
position estimations used for mobile communications or
GPS are based on similar localization methods.
Broadly speaking, there are three common methods
for passive localization [2],[3]. Two possible ways are
beamforming and high-resolution spectral estimation ap-
proaches, which are appropriate for far-field localization
of multiple sources. These methods require a lot of com-
putational power and most of all a narrow sensor spac-
ing to prevent spatial undersampling. The third group
are TDOA-based approaches, which are quite popular be-
cause of their small computational performance require-
ments. These low requirements are a significant advan-
tage, especially with regard to real-time implementation.
Furthermore, the given microphone distance of about
70 cm make a good case for choosing the TDOA approach
for our project. In the next section, the approach will be
explained in more detail.

TDOA-Based Localization

The propagation time from source to microphone, or for
non-acoustic localization to any sensor, can be described
by the time of flight (TOF) or time of arrival (TOA).
Since there is no information about the absolute trans-
mission time from source to receiver in passive localiza-
tion, the TDOA between two sensors is considered. The
distance traveled by the sound during this time differ-
ence can be calculated by multiplying this time difference
with the speed of sound c (assumed as 343 m/s). Based
on these distances, the source position can be estimated,
as shown in section Setup of the Equation System.

Time Delay Estimation

The accuracy of the final position estimation depends
on the proper determination of the TDOAs. The cross-
correlation function is commonly used for this purpose
[3]. Figure 1 depicts the basic principle of the time delay
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estimation (TDE). The time shift between two similar
signals (shown in Figure 1 a and b) can be obtained by
calculating the cross-correlation of these signals (c). The
cross-correlation is maximal at exactly this point where
both signals have no phase shift. The deviation from the
origin to the maximum point corresponds to the time
delay between signal one and two.
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Figure 1: Principle of TDOA determination. The second graph
shows the same signal as the first graph with a time delay. This
time delay can be obtained by finding the maximum of the cross-
correlation (corr(τ)) and determining the deviation from the origin.

Phase Transform

In case of noise, reflections, and other background
sounds, the correlation exhibits large side lobes. As a re-
sult, it might be hardly possible to determine an explicit
time delay. To prevent this effect, Knapp and Carter [4]
introduced a pre-filtering technique, which is applied in
the frequency domain. Thus, the cross-correlation is first
transformed to frequency domain:

s12(τ) = (x1(−t)∗ ∗ x2(t))(τ) (1)

S12(ω) = X∗
1 (ω) ·X2(ω). (2)

Next, the resulting cross power spectral density (CPSD)
can be weighted with a weighting function Ψ(ω):

S12weight
(ω) = Ψ(ω) ·X∗

1 (ω) ·X2(ω). (3)

The most typical weighting function is the phase trans-
form (PHAT) weighting ΨPHAT (ω). It is basically a di-
vision by the absolute value of the CPSD:

S12PHAT
(ω) =

X∗
1 (ω) ·X2(ω)∣∣X∗
1 (ω) ·X2(ω)

∣∣ (4)

In general, the weighting results in a flat magnitude re-
sponse (pre-whitening) but does not have any effect on
the phase response. Since the phase response contains
all information about the time shift, and the PHAT-
weighting does not modify the phase, this weighting de-
livers a single peak at the accurate time delay point and
a more precise time delay estimation is possible even un-
der bad conditions. Knapp and Carter denote this pre-
filtered cross-correlation technique as GCC-PHAT.

Setup of the Equation System

There are several ways to use the determined TDOAs for
sound source localization. Approaches which estimate
the direction of the sound incidence are called direction
of arrival (DOA) or angle of arrival (AOA) methods.

However, for this work, we used a method introduced by
Mahajan et. al. [5]. They showed a feasible way to set
up a linear equation system, which will be derived in the
following. Figure 2 shows exemplarily the basic arrange-
ment of two sensors and one source.

Source
(xs, ys, zs)

Reference Microphone
        (xref, yref, zref)

Microphone k
    (xk, yk, zk)

r
r+Δdk

Figure 2: Simplified microphone arrangement of two microphones
and a source to derive the basic equations to setup a equation
system.

The distance between the source with the coordinates
xs,ys,zs and the reference microphone is denoted by r.
The distance from the source to another microphone, de-
noted by index k, is about ∆dk longer than r, where
∆dk can be obtained by ∆dk = c · TDOAk. These dis-
tances, expressed by the Pythagoras theorem, lead to
Equation 7.

r2 = (xref − xs)2 + (yref − ys)2 + (zref − zs)2 (5)

(r + ∆dk)2 = (xk − xs)2 + (yk − ys)2 + (zk − zs)2 (6)

⇒ x2k − 2xkxs + y2k − 2ykys + z2k − 2zkzs − 2r∆dk =

x2ref + y2ref + z2ref + ∆d2k (7)

Substituting Equation 5 in Equation 6 has the effect that
there is no unknown squared variable in Equation 7 and
a linear equation system can be set up. This equation
contains three unknown source coordinates and addition-
ally the unknown distance r. An explicit solution re-
quires four equations and thus five TDOA measurements.
These equations can be expressed by an equation system
in the form of A · x = b with A ∈ R4×4 and b, x ∈ R4

such as:

A =


2(xref − x2) 2(yref − y2) 2(zref − z2) −2∆d1
2(xref − x3) 2(yref − y3) 2(zref − z3) −2∆d2
2(xref − x4) 2(yref − y4) 2(zref − z4) −2∆d3
2(xref − x5) 2(yref − y5) 2(zref − z5) −2∆d4


xT =

[
xs, ys, zs, r

]
b =


x2ref + y2ref + z2ref + ∆d21 − x22 − y22 − z22
x2ref + y2ref + z2ref + ∆d22 − x23 − y23 − z23
x2ref + y2ref + z2ref + ∆d23 − x24 − y24 − z24
x2ref + y2ref + z2ref + ∆d24 − x25 − y25 − z25



Solution of the Equation System

Since the array provides 32 microphones, it is technically
possible to determine 31 TDOAs leading to 31 equations.
Usually, this modified, overdetermined equation system
Ã · x = b̃ with Ã ∈ R4×31 and b ∈ R31, which has no
unique solution, can be solved with the least square
(LS) method. As described by Damen and Reusken [6],
a regression curve can be approximated by minimizing
the sum of all squared deviations (the residuals) of
measurement data and regression curve points. This
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minimization can be expressed by Equation 8. Re-
arranging this equation leads to Equation 9.

||Ãx− b̃||2 (8)

⇔ ATAx = AT b (9)

To get a more stable and well-conditioned equation
system, it is beneficial to perform the minimization
using the QR-decomposition. An arbitrary matrix A
is decomposed into the orthogonal matrix Q for which
QTQ = 1̃ (with 1̃ = unit matrix) holds and an upper
triangular matrix R.
Inserting the QR-decomposition in the minimization
(Eq. 8) leads to Equation 10 where R0 and c1 denotes
the upper four lines in R and QT · b.

‖QRx− b‖2

=‖Rx−QT b‖2

=‖

R0

0
s

x−QT b‖2

=‖
[
R0x

0

]
−
[
c1
c2

]
‖2

=‖R0x− c1‖2 + ‖c2‖2

The minimization problem can be simplified to R0x− c1
and solved by the explicit resolvable equation system:

R0x = c1 (10)

Real-Time Implementation

To integrate the localization application into the
NarDasS-system, it has to be real-time capable. The im-
plementation of the localization algorithm is based on the
JUCE Framework1 and in particular on the audioDevice-
callback class. This class periodically provides a buffer of
samples. The number of samples delivered per period de-
pends on the buffers size. As a good compromise between
computational workload and overall round-trip latency,
we set the buffer size to 128 samples (at a sample rate of
48 kHz) during development.

Figure 3 shows the signal flow of the localization
application. As depicted, the localization module is
part of the NarDasS-Processor, which additionally
performs adaptive filtering of one input signal to get
the reverberation excitation signal as well as the level
adjustment of the microphone signals depending on the
sound source position (see Arend et al.[1] for a more
detailed description). In general, the NarDasS-Processor
passes the current Fourier-transformed buffer to the
localization application algorithm and gets back the
current position of the sound source in cartesian coordi-
nates.

1JUCE Framework: version: v5.1.2, access: 26.10.17, https:

//www.juce.com

microphone 
   selection

      TDE    main 
algorithm

  median
computing averaging    error 

correction

NarDasS - Processor

audio 

cartesian 
coordinates

Figure 3: The block diagram shows the signal flow of the C++
application. The NarDasS-Processor passes the input signals to
the localization application. As a result, the localization algorithm
delivers the estimated position in cartesian coordinates.

The choice of the buffer-length needs to allow the
detection of all TDOAs occurring in typical situations.
The array diameter of 2 m leads to a maximum TDOA
of 5.8 ms and thus requires at least 512 samples (at a
sample rate of 48 kHz). Therefore, a sufficiently large
process buffer must be filled, before passing it to the
localization algorithm. We achieved the best results
with a minimum size of 4096 samples.
The first block of the localization algorithm is the
microphone selection, which is related to the block
median computing (as illustrated by the coloring). As
described so far, it is possible to determine 31 TDOAs
with respect to one reference microphone and estimate
one position, based on these 31 TDOAs. However, we
achieved more stable results by choosing more reference
microphones, determining 31 TDOAs respectively, and
computing one source position for each reference mi-
crophone. Subsequently, the median is calculaded over
all estimations. The number of reference microphones
and thus the number of position estimations per block
can be adapted according to requested performance
and accuracy. The current implementation uses nine
reference microphones on the horizontal plane.
The TDE calculates as many TDOAs as determined
by the microphone selection and passes them to the
main algorithm. This block sets up the linear equation
system and solves it using the introduced LS method
with QR-decomposition. To implement this solving
procedure, we used a Householder transformation from
the EIGEN library 2. The Householder transformation
is a widely used tool to implement stable and fast
decompositions. Result of the main algorithm is one
position estimation for each reference microphone.
The block error correction checks the plausibility of the
estimated position and compensates for inaccurately
determined TDOAs. According to a fixed buffer size
and an assumed maximum velocity of the tracked
source, it is possible to suppose a maximum distance
the source can move during one computation. If the
distance of the current estimation to the last estimation
exceeds this maximum distance, the current estimation
is assumed to be improbable. Furthermore, this block
checks if the estimated position is located inside the
array. Estimations outside the array are assumed to

2 EIGEN library: c++ library for linear algebra and numeric ,
version: 3.34, access: 27.10.17, http://eigen.tuxfamily.org
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be improbable too. In case of these unsuitable results,
the algorithm discards them and passes the last valid
estimation to the median computing.
The error correction is followed by the me-
dian computing-block, which delivers the median
value from all estimations, as described above.
The final averaging-block is especially relevant for the
localization of moving sources. It calculates the average
of the preceding estimations. As shown in Figure 4, the
averaging weakens the outliers and yields to a smoother
tracking of the source. Most of all, for the following
level-adjustment, it is highly relevant to prevent large
position jumps.

Technical Evaluation

Since the application of the NarDasS-system aims at re-
producing natural sound sources, the technical evalua-
tion of the localization algorithm is based on the sig-
nals speech, guitar, drums, and white-gaussian noise.
All signals were normalized in level and played back
via a JBL Clip consumer loudspeaker (dimensions:
8 cm× 8 cm× 3 cm). Table 1 shows the localization re-
sults for all signals separatly. For each result the average
over localizations at four different array test positions was
calculated. The localization error is obtained by com-
puting the Euclidian distance between measured and es-
timated source position. Additionally, the table lists the
mean absolute error (MAE) over all signal types. To in-
vestigate the influence of the averaging, we compared the
results without averaging (denoted as anone in the table)
with the same calculations with an averaging over the last
two (a2) and four (a4) positions. As can be seen, the algo-
rithm reaches a mean accuracy of 4.8 cm. Considering the
dimensions of the test source (the JBL loudspeaker) and
inevitable measuring inaccuracies, a deviation of about
5 cm is a quite satisfying result. Averaging over the last
estimations (as shown in Table 1 for condition a2 or a4)
yields even more precise results.

Table 1: Estimation results with different averagings. MAE =
Mean Absolute Error, avg = averaging over all positions, anone/2/4
= averaging over the preceding estimations.

avg error [cm]
anone

avg error [cm]
a2

avg error [cm]
a4

Drums 0.1078 0.1060 0.1045
Flamenco 3.9523 3.8947 3.8713

Speech 10.4693 9.927 9.7203
Noise 4.8062 4.6885 4.6558

MAE 4.8339 4.6541 4.5879

Moving Sources

The measurements in the previous section referred to
static sources only. To examine the performance of the
algorithm for moving sources, a pendulum motion of the
sound source has been tracked. For this, the loudspeaker
played back the speech signal while swinging from the
side to the origin of the array. Figure 4 shows the local-

ization results without averaging (a) and the same results
with an averaging over the last four estimations (b). As
can be seen, the averaging compensates for some out-
liers. Overall, the results make clear that the algorithm
can achieve accurate results for slow moving sources.

(a) no averaging a1 (b) averaging a4

Figure 4: Localization results of a moving loudspeaker inside the
array without averaging (a) and with averaging over four preceding
estimations (b).

Conclusion

In this paper, a real-time capable TDOA-based localiza-
tion algorithm has been presented. We tested the local-
ization algorithm for the signals drums, speech, guitar,
and white-gaussian noise and achieved an accuracy of
about 5 cm for non-moving sources. Moreover, it is pos-
sible to track slow movements. The application has been
integrated into the NarDasS-Processor and produces suf-
ficiently accurate results to adjust the level of the micro-
phones in reasonable time.
Up to now, it is impossible to track multiple sources at
the same time. This might be useful to realize a con-
versation of two persons in a VAE, for example. Thus,
the tracking of multiple sources could be a first refine-
ment of the present implementation. In addition, the
localization algorithm has been tested inside an anechoic
room without multipath propagation. For a wider field
of application, the algorithm has to be checked in various
environments.
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