
Modeling for Wave Propagation and Energy Losses in Solids with
Cracks: the MMD-FEM Code
V. Aleshina, S. Delrueb et K. Truyaertb
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The importance of modeling in NDT is due to the fact that it allows one to interpret experimentally measured 

indicators and finally retrieve parameters of damage. This concern stimulated us to develop modeling support for 

nonlinear ultrasound techniques by combining commercially available finite element software with a realistic 

contact model based on the original Method of Memory Diagrams (MMD). The method has been recently 

proposed for automating the account for friction-induced hysteresis in the mechanical response of rough surfaces 

excited by arbitrarily changing normal and tangential displacements. The resulting load-displacement 

relationship represents a boundary condition that has to be set at surfaces of inner boundaries appearing in a 

material with cracks. The boundary condition is then used by the FEM code for calculation of stresses and strains 

in the material's volume. In practice, the FEM part has been programmed in COMSOL that enables a relatively 

simple implementation of user-defined boundary conditions calculated in an external MATLAB procedure. The 

advantage of the MMD-FEM modeling toolbox is in its computational efficiency that results from the multiscale 

approach in which the influence of microscopic features (roughness) is integrated in the response of a 

mesoscopic cell (crack segment), drastically simplifying the account for rough contact geometry. Moreover, the 

instantaneous friction-induced loss of mechanical energy is also easily calculated making it possible to add the 

heat transport module and to study heat diffusion in materials with acoustically excited cracks. We give some 

calculation examples and show how the suggested toolbox assists nonlinear NDT methods. Examples concerning 

the ultrasound propagation and nonlinear acoustic effects are also considered. 

1  Introduction 

The proposed study is at the interface between nonlinear 

acoustics and contact mechanics. It uses a contact 

mechanical model to calculate load-displacement 

relationships for frictional contacts. As a result, a multitude 

of wave and vibration problems for materials containing 

such frictional contacts can be numerically solved. The 

contact model used here is based on certain compromises 

related to the level of complexity and realism.  

On one hand, the modeling of internal contacts is 

possible using elementary models in which a simple 

(frequently linear) load-displacement relation is postulated. 

An example is the diode-type model that uses different 

elastic moduli for normal compression and tension. 

However, elementary models are unable to represent one of 

the major mechanisms responsible for nonlinear behavior of 

materials: friction at internal contacts. Introducing friction 

into the models drastically increases the complexity level 

and makes the system hysteretic and memory-dependent. 

On the other hand, the modeling of frictional contact 

responses is possible by using purely numerical approaches 

of contact mechanics [1]. Doing so, all particular 

interaction laws and movement types can be taken into 

account. The difficulty related to this approach is in the 

implicit character of the procedure. Indeed, accepting the 

Coulomb friction law for representing interactions of flat 

contact faces [2] does not provide an explicit link between 

contact loads and displacements. To obtain that link, an 

iterative procedure is necessary which assumes some trial 

contact face displacements and then tries to adjust them to 

satisfy the Coulomb conditions. Such methods are 

intensively developed [2] despite high computational 

expenses arising due to implicit calculations of complex 

hysteretic dependencies. 

The compromise we propose is based on a semi-

analytical model in contact mechanics that can also be 

referred to as a generalized Hertz-Mindlin approach. The 

classical Hertz-Mindlin solution [3] is the load-

displacement relationship for a tangential shift of two 

spheres with friction, excited by a number of specific 

loading protocols, such as constant oblique loading, oblique 

loading-unloading-reloading series, oscillatory oblique 

loading, etc. Here the solution is extended to the case of 

non-spherical geometries including rough surfaces. This 

means that the contact surfaces are represented as a 

collection of fragments (or mesoscopic cells) in which 

loads and displacements are considered as mean values (not 

fields), as shown in Figure 1. Moreover, the account for 

various loading histories is automated by establishing 

general rules that allow one to link loads and displacements 

via a universal integral representation derived from the 

Coulomb friction law. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Contact problem at the mesoscopic scale: a 

link between loads (contact forces per unit nominal contact 

surface) N and T, and displacements a and b should be 

determined. 

The account for surface roughness is essential for the 

proposed model. Rough surfaces recede under both normal 

and tangential loading because of deformation of asperities. 

Therefore, contact displacements can be determined in the 

framework of the contact model itself and not by external 

conditions. For instance, the tangential displacement 

between two perfectly flat surfaces with friction is not 

defined by the Coulomb friction law, but by the influence 

of surrounding material. In our approach, this difficulty is 

avoided for the price of complication of the contact model, 

but the contact model and the elasticity equations in the 

bulk material become uncoupled. 

The approach is discussed in the next sections in more 

detail. Here a two-dimensional model is presented. 
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2  Method of memory diagrams for 

partial slip 

Frictional mechanical contact between two profiles can 

be found in one of three states depending on loading 

conditions: no contact, total sliding, and partial slip. The 

latter situation occurs due to the presence of surface relief, 

since surface points having different heights are 

compressed differently, and the normal and shear stresses 

determining stick and slip are different at different points. 

We will consider this particular situation first, and will then 

extend the established solutions to the other two (more 

trivial) cases. 

The link between loads N and T, and displacements a 

and b (see Figure 1) is established by application of the 

Method of Memory Diagrams (MMD) in which an internal 

memory function (or memory diagram) responsible for all 

hysteretic effects is introduced. The MMD is based, in turn, 

on the Reduced Elastic Friction Principle (REFP, [4,5]) 

which states that for a frictional system (axisymmetric or 

with rough faces), the tangential loads and displacements 

can be expressed through the normal ones in the following 

way: 

 

( )

( ) ( )( )a q

b a q
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where the normal load-displacement relationship N=N(a) is 

considered to be known, µ is the friction coefficient, q is a 

displacement-related parameter that has to be calculated for 

known a and b, and θ is a material constant that depends 

only on Poisson's ratio ν, 
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Figure 2: Loading histories (constant and arbitrary 

loading) and corresponding memory diagrams. 

 

Eq. 1 can be rewritten in the following form: 
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in which D(α) is the memory diagram function which for 

constant loading is defined as in Figure 2 (upper right 

corner). Using the MMD, it is possible to show that Eq. (3) 

also holds in the case of arbitrary loading in 2D, whereas 

the memory diagram D(α) becomes more complex (Figure 

2, lower line). 

In [6], a set of rules are established which allow one to 

update the memory diagram following the evolution of a 

drive parameter (here displacement b) and then calculate 

the output (here tangential load T) thus constructing the 

sought-for load-displacement relationship. 

In fact, the solution in the arbitrary excitation case is 

represented as a superposition of the basic solutions Eq. (1), 

with numerous parameters being "memorized" during the 

evolution. The memory diagram represents a way of 

keeping track of these parameters. Its interpretation is 

especially simple in the constant-loading case Eq. (1). Here, 

slip is induced by application of a constant tangential 

displacement b while keeping constant normal 

displacement a. The slip zone is determined by parameter q. 

Slip progresses in such a way that the remaining stick zone 

coincides with the contact zone that would be created by 

application of the reduced normal displacement a=q (see 

Figure 3). The corresponding memory diagram has a 

constant section q<α<a which indicates the presence of the 

corresponding slip process. 

The more complicated memory diagram in Figure 2 

basically represents a similar thing except that both a and b 

can vary. In [6] it is demonstrated that curvilinear sections 

in the memory diagram are created during the process when 

the normal compression enlarges the contact spots so 

rapidly that it "overruns" the slip propagation that always 

departs from the contact periphery and progresses towards 

the contact center. In this case, slip does not occur and q=a. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Loading histories (constant and arbitrary 

loading) and corresponding memory diagrams. 

 

 

1

-1

aq

( )D α

α

1

-1

aq

( )D α

α

 

a 

b 

 t 

Constant loading in 2D 

 Arbitrary loading in 2D 

a 

b 

 t 

1

-1

a

( )D α

α

q

1

-1

a

( )D α

α

q

stick slip 

Reduced a=q is applied only 

Both a and b are applied 

CFA 2018 - Le Havre

785



0 4000 8000 12000 16000 20000

-4

-2

0

2

4

-4 -2 0 2 4

-2

0

2

4

6

The MMD is applicable when the load-displacement 

relationship N=N(a) is known. In our example we use a 

quadratic normal reaction curve N(a)~a
2
 as suggested in [7] 

on the basic of experimental and theoretical arguments. 

The MMD can be formulated for both displacement-

driven and force-driven systems, with a formal 

representation T=MMD(b) or b=MMD(t). However, as it is 

shown in the next section, the extension to the total siding 

case is particularly simple for the displacement-driven 

system. 

3  Total sliding and no contact cases 

When |T| reached µN i.e. |b| reaches θµa, the total 

sliding process in which the stick zone completely 

disappears is about to start. If T is considered as an input in 

the contact model, b becomes undetermined in this case and 

depends on stress or strain fields in the surrounding 

material. This is something to be avoided since for explicit 

calculations the boundary condition should be posed 

independently of the surrounding stresses and strains. If 

not, the use of the MMD does not present any benefit. A 

way of avoiding this difficulty is setting b as an input 

parameter and considering T is an output parameter. To 

account for full sliding, b can be represented as a sum of 

two components [8]:  

 0b b b= + � . (4) 

where b0 corresponds to the displacement achieved in the 

total sliding regime (i.e. the mismatch between two closest 

points belonging to the opposite faces experiencing the 

highest normal stress in compression), and b�  is a 

component that reflects partial slip and the ability of 

asperities to recede under tangential load. Eq. (4) allows 

one to write down the solutions for each contact regime: no 

contact, partial slip, and total sliding. 

• Contact disappears when 0a ≤ . Since no contact 

interaction is present, N=T=0, and asperities remain 

unstrained, i.e. 0b =� . Correspondingly, 
0

b b=  in this 

case. The memory function equals 0 everywhere for 

0 aα≤ ≤  (Figure 4(a)). 

• Partial slip takes place when 0,a b aθµ> <� . In 

accordance to the MMD applicable in this situation, 

( )T MMD b= �  while the total sliding contribution b0 

remains unchanged. The memory diagram has a certain 

form depending on loading history (Figure 4(b)). 

• Total sliding happens when a>0 and the memory 

function equals +1 or -1 on the whole interval 0 aα≤ ≤  

(Figure 4(c)). According to Eq. (1), b aθµ= ±�  where the 

sign depends on the direction of sliding. The asperities 

recede under tangential loading, so that the actual full 

sliding contribution should account for this effect: 

0
b b b= − � . 

So, in summary, there are simple criterions for 

distinguishing the contact regimes, and in each case either 

the partial slip component b� , either the total sliding 

contribution b0 is known, therefore the remaining 

component is known too, since their sum is a known input 

parameter. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Memory diagrams in three contact regimes: 

(a) no contact, (b) partial slip ,(c) total sliding. 

The repartition Eq. (4) completes the contact model 

based on MMD. Figure 5 illustrates an example of the 

tangential load-displacement curve (b) calculated for 

displacements histories (a) containing a dozen of 

oscillations for imitating a fragment of a typical acoustic 

signal. In this example, we introduce a characteristic value 

a0 of the normal displacement and use the following 

normalizations: a on a0, b on θµa0, N on N(a0), T on µN(a0). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: Tangential load-displacement relationship (b) 

calculated using our contact model for an exemplar 

displacements history (a). 
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4  Friction-induced energy loss 

The MMD also allows one to calculate friction-induced 

energy loss, i.e. the work done by friction forces in a 

contact system. Strictly speaking, this can be done for an 

axisymmetric system in which stress and displacement 

fields are given by known particular expressions. For a pair 

of rough surfaces in contact, these fields are not known and 

are very complex. However, if two mechanical systems 

have the same dynamic behavior they also have the same 

energetic behavior, which means that they dissipate the 

same amount of energy. The existence of an equivalent 

axisymmetric system for a pair of rough surfaces is 

guaranteed by the REFP (with some assumptions listed in 

the concluding section). 

A detailed analysis will be published elsewhere and 

results in the following expression for an incremental 

energy loss occurring when the displacements a and b 

change by small increments ∆a, ∆b: 

 ( ) ( ) ( ) ( )2
a q

dN
W b a N a N q q a

da
µ θµ

=

 
∆ = ∆ − ∆ − + − 

  

(5) 

This equation includes the total sliding regime when 

q=0, and N(a=q=0)=0. It is possible to show that dN/da=0 

at a=q=0, too. The term -θµ∆a is important here. In 

particular, for total sliding it describes the difference 

between infinitesimal slip distance contributing to the 

friction force work, and the bulk displacement increment, 

∆b. These two values are different since contact of rough 

surfaces is not absolutely rigid in the tangential direction. In 

fact, asperities recede under tangential action, and the 

associated stiffness depends on compression. Figure 6 

illustrates the accumulating energy loss for the same 

excitation history as in Figure 5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: Accumulated friction-induced energy loss 

corresponding to the incremental loss ∆W in Eq. 5. 

The energy loss is normalized on θµ2
N(a0). Horizontal 

parts of the curve correspond to one of two situations: no 

mechanical contact between surfaces, and the case of 

"overloading" briefly described in section 3 (before Figure 

3). In the latter case, ∆a is positive and large enough to 

reach θµ∆b. Hence, contact spots enlarge so rapidly that 

slip commencing at the contact periphery and propagating 

inward can not develop. 

5  Wave propagation example 

The presented contact model has been used as an 

external boundary condition that is to be set at the boundary 

corresponding to the internal contact [9]. Such a possibility 

is offered by the "thin elastic layer" feature available in the 

solid mechanics module of COMSOL Multiphysics. 
Figure 7 shows a simulation example for a test sample 

(aluminum block) with an inclined crack of known 

geometry (set (a)). The geometry has been automatically 

meshed with a variable mesh size which drastically 

decreases in the vicinity of the crack (set (b)). The normal 

reaction curve was taken from literature [7] on ultrasonic 

assessment of properties of contact between two aluminum 

samples. Finally, the two pictures (c) and (d) present 

snapshots of the simulated wave propagation pattern at two 

different moments of time. 

Nonlinear analysis [9,10] of the wave propagation 

simulation results provides nonlinear signatures of damage 

and, finally, an opportunity of using the method for 

nonlinear nondestructive testing and evaluation. The 

modeling of temperature effects associated with wave 

propagation is now in progress. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7: Simulation for a wave propagation in an 

aluminum sample containing an inclined crack. The 

considered geometry (original (a) and meshed (b)) is shown 

as well as two snapshots ((c) and (d)) of the simulated wave 

propagation pattern. 
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6  Conclusions 

This communication concerns a contact model based on 

the semi-analytical solutions in contact mechanics provided 

by the method of memory diagram. The method has a 

restricted applicability in comparison to purely numerical 

approaches in contact mechanics but has an enhanced 

numerical performance suitable for description of acoustic 

or random signals. The method has the following essential 

features: 

• the considered contact interactions model includes 

friction and is based on the Coulomb friction law; 

• the internal contact/crack surfaces have a nontrivial 

topography (e.g. roughness); 

• Some normal load-displacement curve is postulated 

(measured or obtained using known modeling 

approaches); 

• the tangential interactions appear during shift; rolling 

and torsion as movement types are not considered; 

• plasticity and adhesion are neglected; 

• the model is quasi-static, i.e. frictional dynamics effects 

are ignored. 

• the contact load-displacement solution is obtained via 

the Method of Memory Diagrams (MMD) [6] that uses 

the assumptions of the Reduced Elastic Friction 

principle [4,5]. 

• In particular, all vectors normal to contact spots are 

aligned and stay aligned during loading, elastic 

dissimilarity effects [6 and references therein] are 

ignored, etc. 

The contact model has been integrated into COMSOL 

finite element software [9] using the possibility to add 

externally defined boundary conditions calculated in an 

external MATLAB procedure. The developed numerical 

tool (MMD-FEM code) can be applied as modeling support 

for modern nonlinear acoustic NDT methods. Upon the 

experimental validation, the developed tool is to be used for 

comparison of data and modeling results and for estimation 

of geometrical parameters of damage. Its application 

actually completes an NDT algorithm that starts with 

nonlinear acoustic measurements and finally results in the 

estimation of the damage "degree of gravity" and in 

possible predictions for the lifetime of the sample. In 

general, numerical modeling considerably increases the 

visibility and "transparency" of all physical processes used 

for damage detection. 
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