
Explosive instabilities in antiferromagnetic crystals due to the
3-phonon interaction mechanism

V. Aleshin et V. Preobrazhensky
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It is well known that periodic modulation of sound velocity in a material can lead to an exponential increase in 

amplitude (parametric instability). At the same time, periodic modulation of a nonlinear material parameter can 

result in an even more powerful instability having the character of a mathematical singularity. In the phonon 

representation, this mechanism corresponds to the three-phonon interaction instead of interaction of two phonons 

in an ordinary parametric process. Here we suggest a system in which the explosive scenario is theoretically 

described. Our case study concerns magnetoelasic Lamb waves in a magnetic plate subject to the 

electromagnetic modulation of the third order elastic modulus. In addition to the Lamb wave and the modulated 

magnetic field, a shear resonant mode is excited in the plate. We show that even a weak Lamb wave launched in 

such a plate will induce a backward propagating Lamb wave, with amplitudes of the both waves rapidly 

increasing. At the same time, the shear resonance amplitude is also enormously boosted, so that all three 

phonons (two of the Lamb waves and one of the shear mode) experience a sort of a positive feedback. The 

process requires the fulfillment of certain resonance conditions easily interpreted as a phonon interaction 

diagram. However, even if the magnetic pumping is never depleted, there exist factors limiting the amplitude in 

practice. Here we study a mechanisms based on the fact that resonant frequencies depends on amplitudes in a 

nonlinear material thus introducing a resonance detuning that increases with growing amplitude. As a result, the 

mathematical singularity in the time dependency of the amplitudes does not appear, whereas the amplification 

factors still remains huge. 

1  Introduction 

Instabilities in dynamic systems attract the attention of 

researchers due their significant positive and negative 

impacts. On one hand, development of instabilities 

efficiently generates noise, vibrations, etc., finally resulting 

in fatigue, wear, damage of components and structures. On 

the other hand, instabilities generated in a controlled 

environment can have specific applications. For instance, 

an effective conversion of external pumping energy into 

mechanical energy offers an opportunity to use the effect 

for creating micro-actuators. Besides, giant amplification of 

weak signals can help design hyper-sensitive miniaturized 

sensors. These factors motivate our interest to establishing 

the conditions of the huge amplitude growth effect and to 

finding exemplar systems in which these conditions can be 

theoretically predicted and experimentally observed. 

There are at least two confirmed types of behavior 

characterized by a theoretically infinite amplitude growth: 

exponential and explosive. The exponential instability 

appears when a linear parameter such as stiffness in 

oscillators or sound velocity in acoustics is efficiently 

modulated by another physical process. This effect is 

usually called parametric amplification and is typical for a 

wide range of situations ranging from the classical 

pendulum with a variable string length to stimulated 

processes in laser physics [1], light scattering [2,3], 

acoustics [4], etc. 

Our interest here is to another type of growing 

instabilities having the explosive behavior. In this case, an 

external process modulates not the linear parameter but the 

quadratic nonlinear coefficient. The difference between the 

"usual" parametric instability having the exponential 

character and the explosive effect of nonlinearity 

modulation can be understood using the Hamiltonian 

formalism. The classical Hamiltonian contains terms with 

two multiplied amplitudes in the former case and with three 

amplitudes in the latter case. Application of the appropriate 

resonance conditions produces terms containing a 

combination of two or three complex conjugate amplitudes, 

respectively. In a quantum description of such interaction 

between two or three phonons, two or three creation 

operators appear. The presence of the third creation 

operator explains an additional contribution to the 

amplification process and results in an explosive amplitude 

growth when theoretically infinite values are obtained at a 

finite moment of time, as it is for the mathematical 

singularity. 

However, in reality, there exist several factors limiting 

the infinite amplitude growth. One of them is amplitude 

dependency of the resonant frequency that creates a 

detuning from resonance limiting the amplitude. 

So far explosive instability has been experimentally 

observed in plasma [5,6]. Here we consider another system 

in which the effect is theoretically expected. We 

numerically demonstrate the amplitude growth with the 

vertical asymptote, then introduce the nonlinear frequency 

detuning factor, and analyze its influence. 

2  Equations for explosive instability 

in an antiferromagnetic plate 

The objective of this section is to derive equations 

describing the explosive instability in a particular system 

where the three-phonon interaction appears. The system 

represents an antiferromagnetic plate in which a Lamb 

wave propagates in the presence of pumping realized by 

means of an alternative magnetic field. In addition, a shear 

standing wave is to be generated. In this situation, another 

Lamb wave with the opposite propagation direction is 

spontaneously excited. The three phonons necessary for the 

explosive instability generation are coming from the two 

Lamb waves and from the shear resonance mode. The 

magnetic pumping action modulates the quadratic nonlinear 

parameter and actually provides energy for the explosive 

amplitude growth. 

As a model medium we choose an antiferromagnetic 

crystal with the magnetic anisotropy of the "easy plane" 

type belonging to symmetry group 
6

3dD  (e.g. α-Fe2O3 or 

FeBO3). The crystal has a shape of a plate cut in the basal 

plane normal to the crystallographic axis C3 || z (see Figure 

1). We suppose that the plate is placed in a constant 

magnetic field H
r

 parallel to y-axis and in a transversal RF 

magnetic field  ph t
r

 parallel to the binary axis U2 || x (see 

Figure 1). The instability effect is produced by the 

interaction of the fundamental shear mode with the in-plane 

displacements parallel to the binary axis x and two 

asymmetric Lamb waves with polarization normal to the 
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plane and with the wave vectors ±k parallel and antiparallel 

to the x-axis.  

It is possible to show [7] that the potential energy 

density in the material has the form: 

 2 3

442 ( )xz p p xzF C u h t u  , (1) 

where ρ is density of the crystal, C44 is the shear elastic 

modulus and Ψp is the amplitude of interaction caused by 

modulation of the nonlinear elastic parameter  555C H
r
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An explicit expression for Ψp applicable to the 

antiferromagnetic with the easy type magnetic anisotropy of 
6

3dD  symmetry in transversal alternative magnetic field is 

derived in [8]. In the particular case when the only nonzero 

strain component is uxz, Ψp equals to 

 
 

4

44 2

0

1
16

/

D
p

s

H H
C 

  


    , (3) 

where 

 

  
2

0

1
2 /

D E ms

D s

H H H

H H  
  


, (4) 

 

 

 

 

 

 

 

 

 

 

Figure 1: System’s geometry. Wave displacements ku
r

 

and ku

r
 for the Lamb waves with wave vectors k

r
 and 

k
r

 are shown as well as wave displacement U

r
 for the 

shear mode. Magnetic fields H
r

 and  ph t
r

 are also 

plotted. 

In Eqs. (3)-(4), ε=2B14/C44 is the spontaneous 

magnetostrictive strain, B14 is a magnetoelastic constant, 

HE, HD and Hms are exchange, Dzyaloshinsky and 

magnetoelastic effective fields, respectively, ωs0 is the 

frequency of antiferromagnetic resonance, γ is the magneto-

mechanical ratio, ζ is the magnetoelastic coupling 

coefficient. The details of this derivation can be found in 

[7]. 

In Eq. (1), the pumping magnetic field that modulates 

the quadratic nonlinearity coefficient is chosen as 

 
0( ) . .pi t

ph t h e c c


  , (5) 

where p is pumping frequency, h0 is the magnetic field 

amplitude. 

The displacement field is assumed to have the following 

structure: 

 
*( )cosi t i t

xu De D e z
l

    
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, (6) 
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 
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Here the contribution ux corresponds to the shear 

resonance mode with the frequency  and amplitude D, 

while uz-component describes the Lamb waves with the 

correspondent wave number k and frequency k. The Lamb 

waves have approximately vertical displacement since they 

are considered in the short-wave approximation in order to 

make use of the fact that wave interactions enhance when 

the wavelength decreases. Amplitude A of the forward 

wave is coming from the excitation signal while the 

backward wave of the amplitude B is not deliberately 

excited but appears spontaneously as it will be 

demonstrated. In Eqs. (6)-(7), l is the plate thickness. 

The equations of motion corresponding to the potential 

energy density Eq.(1) have the form: 
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Equations for amplitudes are obtained from Esq. (8)-(9) 

in the following way. First, Eq. (8) is multiplied by 

 cos /z l , Eq. (9) is multiplied by  sin /z l , and 

both equations are integrated over the plate thickness 

0 z l  . Then two resulting equations are obtained, into 

which the explicit forms Eq. (6)-(7) have to be substituted. 

Since amplitudes A, B, and D evolve slowly in comparison 

to fast terms with frequencies k, p, and , their double 

derivatives can be neglected. Finally, only resonant terms 

with 

 2 0p k    , (10) 

should be retained. The eventual result for the slowly 

varying amplitudes is presented in the form of the following 

equations: 
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where damping factors 1 and 2 have been additionally 

introduced. Here v is the group velocity of the Lamb waves. 

Here it is appropriate to mention that an attempt to build 

up the classical Hamiltonian corresponding to Eqs. (11)-

(13) will produce a term containing 

 * * *

0 . .pi t
h e d d a b c c


  , where a, b, and d are the 

canonical variables corresponding to amplitudes A, B, and 

D, respectively. The combination 
* * *d a b  has a quantum 

counterpart in the form of multiplication of three phonon 

creation operators. This fact indirectly explains the 

explosive growth effect. 

3  Numerical demonstration of the 

explosive instability 

For the numerical analysis, it is convenient to rewrite 

Eqs. (11)-(13) in the following form: 
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Here time t is measured in microseconds, x and L are 

normalized on the group velocity v, new amplitudes A and 

B are obtained by adding a factor k/ε, amplitude D is 

multiplied by lε/2 (ε is the spontaneous magnetostrictive 

strain introduced above), detuning from resonance 

0
2p p k       is neglected, the interaction 

amplitude Φ is defined as 

 0

2
p

g

k
h

v




   , (17) 

and a new parameter  / 8 k    is introduced. 

Here parameter D0 corresponds to a continuous excitation 

of the resonance mode by an external alternative force. 

Basically, in experiments such force is created by an 

additional alternative magnetic field applied at the 

eigenfrequency of the mode [7,9]. 

Equations (14)-(16) are to be completed by the 

boundary and initial conditions: 

  00 0
, 0

x t
A A t A

 
  , (18) 

 
0

0, 0
x L t

B B
 
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 00t
D D


 , (20) 

where A0(t) is the amplitude of an incident wave at the 

entrance x=0 to the active zone. 

Equations (14) and (15) describe the parametric phase 

conjugation of traveling waves as the presence of complex 

conjugate amplitudes in the right-hand sides. These 

conjugate amplitudes contribute into Eqs. (14) and (15) 

together with the shear excitation D and variable  

corresponding to the pumping magnetic field (see Eq. (17)). 

At the same time, Eq. (16) introduces a feedback effect into 

the system, when the signal (traveling Lamb waves) 

impacts the pumping (shear resonance). In the absence of 

the feedback effect, the amplitudes of Lamb waves would 

exponentially increase [10,11] once the threshold of 

parametric instability is reached. As we will show here, the 

addition of feedback in Eq. (16) considerably modifies the 

behavior of the system. Due to the feedback, the 

exponential amplification scenario is followed by the 

explosive instability. 

Accepting the following typical values of physical 

parameters of the problem: k/(2)=20 MHz, 

/(2)=1 MHz, acoustical quality factor of 103, v=105 m/s, 

L= 4 cm, H=0.5 kOe, h0=40 Oe, and magnetic parameters 

for the antiferromagnetic crystal taken from [7,12], we 

obtain the normalized parameters 1=6·10-2 (s)-1, 2=3·10-3 

(s)-1, L=10 s, =10 (s)-1, =6.25·10-2 (s)-1 in 

Eqs. (14)-(16). In Figure 2 below, t, x, and L are measured 

in microseconds. 

 In the boundary condition Eq. (18), an explicit form 

for A0(t) should be set. In fact, in the situation of the giant 

amplification considered here the exact shape of the 

"starter" signal is not essential. We choose a Gaussian pulse 

  
 
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0 0 2
exp

2
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A t A

w

 
  

 
 

, (21) 

of duration w=0.5 s centered at t0=2 s. Two remaining 

parameters, A0 and D0, determining the boundary conditions 

Eqs. (18)-(20) are already normalized on the spontaneous 

magnetostrictive strain ε≈10-5. Therefore A0=10-2 taken here 

as an example corresponds to a low strain of about 10-7. The 

shear mode amplitude D0 plays the pole of a pumping; a 

chosen value D0=5·10-2 actually means that the considered 

pumping amplitude is quite low (about 5·10-7) and can be 

increased at least by a factor of 101-102. The normalized 

amplitudes can reach values of order of 102 (physical 

strains about 10-3); at higher strains the crystal fails. 

This numerical example shows that in the considered 

regime the starting values of signal or shear pumping have 

little influence. Sooner or later, the explosive instability 

develops with a vertical asymptote while the parametric 

process (no shear wave feedback) results in the exponential 

amplitude growth (linear in the logarithmic scale). 
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Figure 2: Time dependencies for the amplitudes A≈B at 

the centre of the plate i.e. at x=L/2 showing explosive 

(black curves) and exponential (gray curves) instabilities. 

The former case occurs when the additional resonant shear 

mode pumping is applied while the latter situation 

corresponds to the classical parametric interaction (no 

additional shear action, magnetic pumping only). The 

vertical axis is shown in the logarithmic scale. Sets (a)-(c) 

illustrate the process at different values of parameters 1, 

D0, and A0, respectively. The baseline curves (thick lines) 

are the same in all the three sets. 

4  Effect of the nonlinear frequency 

shift 

However, in reality, rapidly growing amplitudes are 

always limited by a number of factors. The most obvious of 

them is pump depletion; indeed, infinite amplitudes are not 

possible at least since the pumping can not provide infinite 

energy. Other processes limiting the amplitude nonlinear 

frequency shift due to strong cubic nonlinearity in an 

antiferromagnetic crystals. Taking into account this 

mechanism characterized by coefficient R, we arrive at a 

system of corrected equations: 
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(24) 

The corresponding solution is depicted in Figure 3. If 

the frequency shift factor is taken into account, the initial 

rapid amplitude growth is followed by an oscillatory 

behavior with an increasing frequency of oscillations. The 

effect can be interpreted in the following way. The 

nonlinear frequency shift breaks the synchronism between 

the generated waves and the pumping, therefore the 

amplitudes decrease. This decrease partly restores the 

synchronism which results in the subsequent amplification 

growth. Finally, depending on the initial amplification 

increment, one of two situations can occur: a trend towards 

a stationary level with lowering frequency of amplitude 

oscillations or persisting amplification with increasing 

frequency of amplitude oscillations. The latter case is 

illustrated in Figure 3. The calculations are terminated at 

t=27 s in our example since after due to rapid increase of 

the vibration frequency they become less reliable or require 

a larger number of discretization points. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Time dependencies for the amplitudes A≈B at 

the centre of the plate in the case with (thin black line) and 

without (thick gray line) resonant frequency detuning. 

However, it is important to mention that, despite of the 

amplitude limit effect of the nonlinear frequency shift 

effect, the amplitude growth remains high and reaches a 

factor of 103 or more for smaller starter signal amplitudes. 

6  Conclusions 

The analysis and numerical examples we present are 

related to systems with two-and three-phonon interactions. 

Two-phonon processes described here correspond to the 

classical parametric interaction of the kind 

p k k    , where the pumping wave of frequency p 

exponentially amplifies signals at frequencies k and -k. In 

the considered case, Lamb waves of frequencies k and -k 

propagate in a plate made of antiferromagnetic material in 

which a transverse alternative magnetic field of frequency 

p is applied. The situation changes considerably if an 

additional pumping channel is introduced in the form of a 

shear resonant mode of frequency . The corresponding 

three-phonon process p k k      generates 

instabilities of much more "powerful" (explosive) type 

when time dependencies of signal amplitudes behave as a 

mathematical singularity. This offers an opportunity to 

convert the magnetic energy into mechanical energy in an 

extremely efficient manner. 

We also analyze one of factors limiting the infinite 

amplitude growth in practice, such as resonant frequency 

detuning due to nonlinear amplitude dependency of sound 
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velocity in a material. However, even with the account for 

this limiting factor, the amplitude increase remains huge. 

An antiferromagnetic crystal excited in a way described 

here is only an example of a situation in which the derived 

explosive instability equations are applicable and the three-

phonon interaction takes place. The considered nonlinearity 

modulation mechanism is possible to extend on systems of 

different physical nature and to apply in acousto-

electronics, electro- and hydrodynamics and in 

microsystems designing. 
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