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In conventional sonar approaches, the Doppler effect can be viewed either as a disturbing effect or as a support 

of information; transmitted waveforms are chosen accordingly. In this paper, we show that the bias due to 

Doppler can be easily compensated for any waveform by an appropriate definition of the emission date. A family 

of “naturally” Doppler tolerant waveforms is presented. With such waveforms, in addition to a non-biased 

estimation of position and a minimum contrast loss, we show that additional processing can be implemented and 

used to estimate target (or mobile) velocity using either a pair of signals or investigating the fine structure of the 

complex ambiguity function. 

1 Introduction 

In conventional sonar approaches, the Doppler effect is 

viewed either as a spurious effect or as a carrier of 

information. In the first case, sonar designers look for 

Doppler insensitive (or tolerant) waveforms to transmit 

(linear period modulation, for instance [1, 2, 3, 4]) or for a 

Doppler sensitive (or resolving) waveforms (pure tone 

bursts or more complex waveforms such as Costas codes 

possessing dual resolution properties [5, 6]).  

In this paper, we will show how Doppler insensitive 

waveforms associated to conventional pulse compression 

can be designed and associated to additional echo 

processing for estimating sonar target (or mobile) velocity. 

2 Doppler-induced bias, just an 

illusion 

As historically, sonar echo processing was inspired from 

radar processing (processing in the baseband), an important 

issue was the bias induced by Doppler and the “tilt” of the 

ambiguity function of the transmitted signal. Considering 

the processing power of DSP devices since the late eighties, 

and the low sampling rate required for conventional sonar 

signals, processing can be achieved, since then, on “RF 

signal” with no need of frequency shifting.  

In his PhD thesis [8], M. Mamode has shown 

that for any signal, a so called “decoupling 

delay” can be defined that can then be used as a 

new reference for “time zero” and that allows 

decoupling the time delay estimation from the 

target velocity [9].  Although the concept is very 

simple, it has not been often used as processing 

was still achieved “the radar way”: instead of 

starting counting time delay from the beginning 

of the signal, one can simply start counting d 

seconds before (or after) that date (figure 1). 

t t
d

Figures 1: a simple re-definition of date t=0 for 

any transmitted signal. 

 

The “new” transmitted signal contains a d duration 

of zeroes that will be compressed or dilated by the 

Doppler effect. M. Mamode showed that this delay can 

be computed, for any signal to decouple arrival time 

from Doppler rate [8, 9]. 

This can be simply explained graphically:  

 let’s consider any signal with a given 

compression ambiguity function [7];  

 the ambiguity function is tilted and bias is 

proportional to Doppler compression rate: 

b = d;  

 adding a delay d to the signal will generate the 

same bias in the opposite direction:          b =  -

d;  

 both delays cancel each other. 

 

 This concept is illustrated in figures 2, for a linear 

frequency modulated chirp. Figure 2a shows the 

conventional ambiguity function (Kelly-Wishner 

compression ambiguity function [7]) of a LFM chirp 

while figure b shows the same for a delayed chirp. 

 

 

            a- d= 0 ms     b- d =45 ms 

Figures 2: illustration of the use of a 

decoupling delay for compensating the Doppler 

effect. Ambiguity functions of a linear FM chirp 

(LFM: 110-90 kHz, duration: 10 ms). Scale: 

vertical =1.1 to 0.9 (velocity: ±7.5 m/s); 

horizontal: ± 0.64 ms around arrival date, 

dynamic range: 12 dB. 

 

Simulations have been achieved considering a 

processing around the carrier: no frequency shifting or 

heterodyning. 

 

Having said that, the only residual effects of the 

Doppler on the output of matched filtering or pulse 

compression will be time spreading and loss of contrast. 
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3 Naturally optimal waveforms 

Optimal waveforms are the one that minimize the 

residual disturbances to Doppler effect. For this purpose, a 

linear-period modulation (i.e. hyperbolic frequency 

modulation, HFM), have been traditionally used. Again, it 

can be shown graphically that compression of a hyperbola 

can be achieved by shifting on the same hyperbola; i.e. 

modulation law is the same for normal and compressed 

signal and only starting and ending frequencies will be 

changed. In fact, this can be also demonstrated in the 

frequency domain. For large time-bandwidth product 

(stationary phase approximation [10]), the group delay of a 

HFM will possess the same expression that period 

modulation in the time domain.  

If we now consider the general family of signals with a 

hyperbolic group delay, they can be expressed by their 

spectrum (analytic complex signal): 

 
Where A() is any positive real function and  is a real 

parameter. 

For a constant radial speed, the compressed version can 

be expressed as: 

 
The ambiguity function of signal z(t) can thus be 

expressed as:  

 

Where:  is a positive real 

function (power density).  

Its inverse Fourier transform possesses the structure of 

an autocorrelation function: its envelope is maximal in zero 

(or at t0 for a delayed echo) and it is symmetric with respect 

to the central date. 

 is a pure phase term factor that will generate a 

phase shift between the autocorrelation envelope and its 

real part. 

In short, for this family of signals, the envelope is only 

slightly affected by the Doppler effect (loss of contrast of  

and equivalent time spreading). In addition, the phase of the 

real part at the unbiased arrival date carries an information 

on the velocity. 

 Figures 3 illustrate the properties of such transmitted 

waveforms. 

a:  = 1 (v = 0 m/s) b: = 1.004 (v = 3 m/s) 

Figures 3: cross sections (envelope and real 

part) of the complex ambiguity for waveforms 

with a linear period modulation of group delay 

(log normal amplitude modulation). [11, 12, 13]. 

4 Velocity estimation 

Despite the fact that we consider Doppler insensitive 

waveforms (in term of contrast loss), we see that the 

information on the velocity is still present. Three ways can 

be envisaged for velocity estimation: 

o Method 1 [14], [15]: Transmit two waveforms 

simultaneously, one Doppler-unbiased, S1, and 

one Doppler-biased (with a delay ), S2, and 

estimate the relative delay (). 

o Method 2:  Fine observation of the complex 

ambiguity function: estimate the position from the 

envelope and velocity from real part. 

o Method 3: combination of methods 1 and 2. 

 

 

For the first method, the second signal can be either in a 

separate band or “orthogonal” to the first one in the same 

band. For instance, one can use signal and time reversed 

signal (orthogonality = time-bandwidth product). The 

second signal can be delayed (by  seconds). In order to 

increase the accuracy of the estimation: the longer the delay 

, the better the accuracy (Doppler induced delay is 

proportional to Doppler compression rate). The maximum 

delay admissible is given by a priori information on target 

velocity (as must remain in the observation beam at both 

dates time 1 to time 2). 

The method is described in figure 4. 

The estimation error on  is twice the estimation of 

arrival date after pulse compression, i.e. the error  

provided by conventional Woodward formula:  

 
where B is the effective bandwidth and s is the signal 

to noise ratio after pulse compression. 

S2
t



S1


0

S2
t



S1
0

Figure 4: Illustration of method 1 for estimating 

both position and velocity. Method 1 using a pair 

of waveform; S1, Doppler insensitive and S2 

Doppler sensitive one. 
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The second method is based on the observations made 

on figure 3. It is achieved in three steps: 

1. Estimating the unbiased arrival date using the 

envelope of complex ambiguity function. 

2. Estimating the value of the real part of this 

function at this date. 

3. Compute  

 

Figures 5 show the velocity estimation for 2 cases: 

input signal to noise = 20 dB. and -30 dB. 

Test signal possesses a hyperbolic modulation of 

group delay with a gaussian envelope with an effective 

bandwidth of 8.8 kHz around 10 kHz and an effective 

duration of 11.4 ms. Pulse compression gain is 20 dB. 
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Input S/N ratio= -30 dB 

Figures 5: estimated velocity (in m/s) as a 

function of real one. 

For large velocities one will be faced to the periodic 

structure of the output phase as illustrated in figure 6. 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

2

2.5

 

Figure 6: estimated velocity (in m/s) as a 

function of real one.  Same test signal as figure 5. 

S/N ratio: +20 dB 

5 Conclusion 

This paper shows that any Doppler-induced bias can 

simply be cancelled by an appropriate definition of the 

date of emission. For a given family of naturally 

Doppler-tolerant signals (linear modulation of group 

delay, d=0), the phase of the complex ambiguity 

function (compression) can be used to estimate the 

velocity. Due to the periodic nature of the phase, the 

estimation will be difficult for large velocities. In this 

case, either an a priori information can be used (rough 

trajectory), or a pair of transmitted signals can be used 

(instead of a single Doppler insensitive one). The 

second signal can then be delayed and the effective 

delay after pulse compression will be used to give a first 

estimate of the velocity that can then be combine with a 

fine phase analysis.  
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