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La méthode de vérification de codes proposée s’appuie sur l’étude de la convergence des résultats numériques
pour des applications en acoustique environnementale. Ces vérifications se font à partir des solutions analytiques
de scènes géométriques simplifiées de dimension deux. La procédure de vérification est appliquée sur cinq cas tests
(scènes acoustiques). Le code développé en langage Python version 2.7 renvoie l’erreur relative à la solution de
référence (analytique), ainsi que sa représentation dans la norme spatiale (2 et max) sélectionnée afin d’observer
le taux de convergence sur un minimum de 5 grilles spatiales. Les méthodes de comparaisons sont fournies pour
des méthodes numériques temporelles et fréquentielle. Cet outil numérique est ouvert à contribution en vue de
son extension à d’autres scènes académiques, d’autres méthodes numériques, ainsi que pour le développement de
procédures de validation de codes à partir de campagnes de mesures.

1 Introduction
With a steady increase of available numerical resources,

computational methods, such as wave based methods,
applied to outdoor acoustics allow for long range sound
propagation within an acceptable frequency range. However,
before simulating complete acoustic scenes, the codes
have to be thoroughly verified and validated. This can be
carried out using specific Verification and Validation (V&V)
procedures [1, 2].

The verification procedure consists in the comparison
of the numerical results with analytic solutions that are
mainly available for basic geometries. This can be achieved
by checking the accuracy of the results for each physical
phenomena that takes place in outdoor acoustics e.g. ground
reflection, diffraction by edges, meteorological effects...
Once the verification procedure has been performed, more
complexity can be added into the acoustic scenes, e.g.
including irregular geometries, heterogeneous media, in
order to get closer to real cases. Analytic solution are usually
not available for these complex scenes, therefore in these
cases the numerical results are compared with experimental
data. This procedure is called validation. Both verification
and validation require the definition of benchmark test cases
that define the geometries and all parameters describing the
acoustic propagation.

Benchmark test cases for outdoor sound propagation has
first been introduced in the mid ninety’s by Attenborough et.
al [3], in which the Fast Field Program (FFP) and the
Parabolic Equation (PE) are compared to analytical solutions
for sound propagation above impedance grounds in presence
of four types of meteorological conditions. More recently, an
online platform benchmark has been released [4], in which
four fields of acoustics are represented. The website provides
examples of benchmark definitions, including geometries
and numerical setups for each case. However, none of these
references provide a detailed procedure for the verification
of acoustic codes.

The main contribution of this communication is the
presentation and the application of a detailed verification
procedure for outdoor acoustic codes in either time or
frequency domain. A brief reminder on error and norms
calculation is presented in Section 2. Section 3 gives the
five main steps that can be followed to carry out a code
verification procedure. In Section 4, this procedure is applied
on five geometrical test cases, where the numerical results
are given using convergence rates and orders of accuracy.
Ultimately, this work might give rise to an online plateform
aiming for the verification of environmental acoustic codes.

2 Error and norms calculations
The present section is mainly based on [5, App.A, p.245-

258]. The variables for the integrations and error measures on
the acoustic pressure have been adapted to two-dimensional
(2D) time-domain methods.

The absolute error between a numerical solution p̂n
i

calculated with a time domain method (FDTD, TLM...) at a
given location (0, x, y) and at the time t can be defined as

error(xi, yi, tn) =
∣∣∣ p̂n

i − pexact
(x,y,t)

∣∣∣ . (1)

where pexact
(x,y,z,t) is the exact pressure that can be derived, for

basic cases, as analytical solutions. The coordinates xi and yi

are the discrete location on the numerical grid, and tn is the
dicrete time sequence.

The magnitude of the error can be measured using
standard function space norm for a given time iteration tn
that can be expressed for the general q-norm as

||error||q =

(∫
x,y
|error(x, y, t = tn)|qdxdy

)1/q

. (2)

For a discrete numerical grid application, Eq. (2) can be
rewritten in a discrete form as

||error||q =

∑
i, j

|errorn
i, j|

qh2

1/q

, (3)

where h is the spatial step, n is the discrete time iteration
and the subscripts i, j are the discrete coordinates on the
numerical grid.

Similarly, in the frequency domain it becomes

||ERROR||q =

∑
i, j

|ERROR fn
i, j|

qh2

1/q

, (4)

where the ERROR is now calculated for a given frequency
fn from pressure signals obtained using frequency domain
methods.

Another way to look at the convergence rate is to show the
observed order of accuracy that corresponds to the measured
convergence rate between two grids. The observed order of
accuracy p between two consecutive spatial steps h1 and h2
can be expressed as

pobs. =
log10(||error||q(h1)/||error||q(h2))

log10(h1/h2)
. (5)

where h1−h2 has to be small enough such as explained in [5].
In the results Sec. 4, the norms are calculated using the

function numpy.linalg.norm from the package numpy [6]
used for scientific computing with Python [7] programming
language 2.7.14.
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3 Code verification procedure
Considering a given numerical method applied on a

given geometrical test case, the verification procedure can
be carried out following these five main steps :

1. implementation of the analytical source term in the
numerical method (initial condition), or use of a well
known source signal - e.g. Gaussian pulse,

2. comparison between the numerical results and the
analytical solution in time or frequency domain, which
gives the absolute error (see Eq. (1)),

3. repetition of step 2 for at least five spatial steps (h1 to
hN) that corresponds to five Cartesian grid spacing,

4. calculation of the spatial norm of the error Eq. (3) or
Eq. (4) for each grid,

5. presentation of the convergence rate - e.g. using
log-log plots, and calculation of the observed order of
accuracy (see Eq. (5)).

These steps can be applied to either time of frequency
domain numerical methods as shown in the following
section.

4 The five test cases used for code
verification

The three numerical codes that are going to be verified
in this document are based on the three following methods :
the finite difference applied to the Helmholtz (FDH)
equation [8], the finite difference time domain (FDTD)
method [9] and the transmission line matrix (TLM)
method [10, 11]. Their principle is not given here for the
sake brevity.

Five test cases made of basic geometrical 2D scenes are
used for the following codes verifications. These cases allow
for the test of outdoor acoustics phenomena such as free
field propgation in case 2, reflecting boundary conditions
from street canyons or rectangular courtyards in case 3,
ground reflection in case 4, acoustic diffraction by circular
obstacles such as tree trunks in case 5. The five respective
‘exact’ solutions are calculated analytically.

Based on the local truncation error found for second
order propagation equations discretized using centered
finite differences - see e.g. [9, Sec. II.F.] - the expected
convergence rate for the three numerical methods is of
second order.

4.1 Case 1 : Laplace operator eigenfunction
4.1.1 Formulation

This test case corresponds to the sampled eigenfunction
of the Laplace operator [12] that is written as

P̂i, j = sin(πih/Lx) sin(π jh/Ly), (6)

where Lx and Ly are the lengths of the domain. Here Lx =

Ly = L = 1 m. This gives the source function

F̂i, j =

(
3π2

L2 + k2
)

sin(πih/L) sin(π jh/L). (7)

4.1.2 Numerical setup

The source term defined by Eq. (7) is implemented into
the numerical update of the FDH method. The numerical
domain is a square of 1 m side lengths. It is discretized using
a regular rectilinear grid of nodes. A total of 50 grid sizes
are used with a spatial step ranging from h1=0.001 m to
h50=0.1 m. The error is calculated for each grid using Eq. (6)
as a reference for the analytic form of the pressure.

4.1.3 Results

The pressure field inside the numerical domain of the
FDH method is depicted in Figure 1.

Figure 1 – Real part of the normalized pressure obtained
using the FDH method.

The error defined by Eq. (1) is the absolute value of the
difference between the numerical result and the analytic
formulation (6). The norms of the error are calculated over
all grid points for each spatial step. Figure 2 shows the
two-norm and the max-norm of the errors. The second
order convergence rate is observed for max-norm, whereas
the two-norm shows a 2.5 convergence order. This 2.5
convergence remains to be explained, as the expected rate is
around 2. As expected, the observed orders of accuracy start
fluctuating around the formal order of convergence when the
grids get coarser.
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Figure 2 – Two-norm and max-norm of the absolute
error (top) and the corresponding observed orders of
accuracy (bottom) for case 1, using the FDH method.
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4.2 Case 2 : geometrical spreading of a 2D
point source

Case 2 is used for time domain methods - here FDTD
or TLM - since the numerical time signals are directly
comparable to the following pulse formulation.

4.2.1 Formulation

The Gaussian pulse used as a source signal at the node i
is written as

f̂ n
i = exp

(
−π2 (0.5 f nTs − 1)2

)
, (8)

where f is the maximal frequency, Ts the time step and n is an
integer that corresponds to the time iteration. The magnitude
of this 2D point source theoretically decays proportionally
to the inverse square root of the distance between the source
and the receiver. Therefore, the analytic formulation of the
signal can be rewritten as

f̂ n
i = 1/

√
dsr exp

(
−π2 (0.5 f (nTs − dsr/c) − 1)2

)
, (9)

where dsr is distance between the source and the receiver.

4.2.2 Numerical setup

The numerical domain is simply made of a point source
located at its center. The receivers are located on two
axes, one following the axis of the numerical network,
one following the diagonal. The numerical domain is a 2D
rectilinear network, in which a point source located at the
center emits the Gaussian pulse defined by Eq. (8) with a
cutoff frequency of 2000 Hz.

Figure 3 shows the receiver locations - one every 0.5 m
on each axis, axial and diagonal. The simulation duration
is T= 20 ms, so no unwanted reflection from the limit of
the domain can reach the receivers. The spatial steps used
for the following grid convergence study are (from finest
to coarsest) h = [0.01, 0.02, 0.04, 0.08, 0.16] m. The
corresponding time steps for each grid are set equal to
Ts = [0.125, 0.25, 0.50, 1.00, 2.00] · 10−4 s. It is important to
note that the grid parameters have been chosen to be exact
multiple from one grid to another in order to accurately
compare the grids both in terms of time iteration and receiver
position. Therefore, the simulations are carried out below
the theoretical Courant limit, i.e. λ = cTs/h < 1/

√
2.

d s
r

Source
On-axis receivers

Diag
on

al
rec

eiv
ers

45◦

Figure 3 – Geometry of the case 2 : the maximal distance
between the source and the receiver is dsr = 4 m, with 8

receivers per axis.

4.2.3 Results

The errors are the averaged difference between the
numerical time signals and the analytical formulation (9).
The norms are calculated over all receivers. Both methods
shows second order of convergence, as shown in Figure 4.
The TLM convergence appears to be more impacted than
FDTD for the coarsest grids, where the order of convergence
is reduced.
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Figure 4 – Two-norm and max-norm of the absolute error
(top) and the corresponding observed orders of accuracy

(bottom) for case 2, using the FDTD and the TLM methods.

4.3 Case 3 : acoustic modes of a 2D rectangular
domain

4.3.1 Formulation

Case 3 aims at testing the reflecting boundary condition
of a 2D rectangular closed domain. The exact solution of
such a setup at the iteration n is written as

pexact(i, j, n) = cos
(

niπi
Li

)
cos

(
n jπ j
L j

)
cos(ωi, jnδt), (10)

where

ωi, j = πc

√(
ni

Li

)2

+

(
n j

L j

)2

, (11)

where i, j are the discrete node location on the grid, ni and n j

are the modes numbers. The exact solution (10) is used as an
initial condition and imposed at each point of the domain at
the first time step.

4.3.2 Numerical setup

The rectangular domain is of side lengths Lx = 2.36 m ×
Ly = 1.28 m. The spatial steps h and the time steps Ts used
for the grids are identical to case 2.

The two modes studied in this test are shown in Figure 5
for an FDTD simulation. From this pressure rendering, the
FDTD simulations seem to be in good agreement with the
analytic solutions.
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Figure 5 – Snapshots of the pressure returned by the FDTD
update inside the 2D rectangular domain using the finest

grid (h = 0.01 m and Ts = 0.125 · 10−4 s) for the modes : (a)
nx = 1, ny = 0 ; (b) nx = 2, ny = 1.

4.3.3 Results

Figure 6 shows the norms of the errors for the three
numerical methods. All are second order convergent as
expected from the local truncation error - see e.g. [9,
Sec. II.F.].
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Figure 6 – Two-norm and the max-norm of the absolute
error (top) and the corresponding observed orders of

accuracy (bottom) for case 3, using the FDH, the FDTD and
TLM methods.

It can be noted that, this case can be used with both time
domain methods - using initial condition, and frequency
domain methods - assuming the harmonic behavior of the
exact solution, i.e. ωi, jnδt = 0 in Eq. (10). However, it only
takes into account perfectly reflecting boundary conditions.

4.4 Case 4 : reflection from a ground
4.4.1 Formulation

The analytic solution for this case can be found in [13].
The total pressure field ptotal that takes into account both the
direct and reflected waves that respectively follow the paths
R1 and R2 can be written as

ptotal =
e kR1

R1
+ Q

e kR2

R2
, (12)

dsr

hs hr
Source Receiver

Ground (Z)

R1

R2
hsSource

Receivers

Ground (Z)

Figure 7 – Geometry of the case 4 (left) with hs = 0.64 m,
dsr = [0.32 : 0.32 : 5.12] m and hr = [0.32 : 0.32 : 2.24] m ;

depiction of the receiver grid (right) with a total of 112
receivers.

where k is the wave number and Q is given by

Q = Rp + (1 − Rp)Fw, (13)

where Rp is the reflection coefficient written as

Rp =
cos(θ) − 1/Z
cos(θ) + 1/Z

, (14)

and Fw can be written as

Fw = 1 + 
√
πwe−w2

erfc(− w). (15)

and

w =
1 + 

2

√
kR2

(
cos(θ) +

1
Z

)
, (16)

where Z is the surface impedance of the ground and θ the
angle between the axis normal to the ground and the reflected
path.

4.4.2 Numerical setup

Case 4 is the study of a point source emitting a Gaussian
pulse above a perfectly reflecting ground as depicted in
Figure 7. The source height is hs = 1.50 m. The receivers
are located on the grids with an horizontal spacing of 0.5 m
- i.e. between dsr = 0.5 m and dsr = 7.0 m and a vertical
spacing of 0.2 m - i.e. between hr = 0.2 m and hr = 1.4 m.
The spatial steps h and the time steps Ts used for the grids
are identical to case 2.

4.4.3 Results

The attenuation as a function of frequency for the TLM,
the FDTD and the analytic solutions are shown in Figure 8 at
4 receiver locations. The results from the numerical methods
seem to be in agreement with the analytic solution.

Figure 9 shows the errors using the two-norm and the
max-norm for each numerical method. The error for each
grid has been averaged over the whole frequency range of
interest, i.e. from f = 25 Hz to f =1000 Hz. Therefore, the
convergence rate of second order is verified for the whole
frequency range.

Both time and space discretization are tested. This case
could be further extended to impedance boundary condition
(not shown here). It could also be extended to long range
sound propagation including meteorological effects [13] (not
shown here).

4.5 Case 5 : plane wave scattering from a
circular obstacle

4.5.1 Formulation

The monochromatic incident pressure pi, propagating in
the vicinity of a circular scatterer with a radius a, can be
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Figure 8 – Attenuation relative to free-field propagation for
4 receiver positions : from left to right, top to bottom, the

coordinates expressed in meter (x1 = 1.28, y1 = 0.96) ;
(x2 = 2.88, y2 = 0.96) ; (x3 = 4.80, y3 = 0.96) ;

(x4 = 0.96, y4 = 2.88).
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Figure 9 – Two-norm and max-norm of the absolute error
(top) and the corresponding observed orders of accuracy

(bottom) for case 4, using the FDTD and the TLM methods.

written in a cylindrical coordinate system (r, ϕ, z) as the sum
of cylindrical waves as follows [14]

pi = P0

∞∑
m=0

(2 − δm0)im Jm (kr) cos(imϕ)eiωt, (17)

where k is the wave number, ω the angular frequency, P0 the
amplitude of the incident wave, δm0 the Dirac function and
Jm the Bessel function of the first kind for real order m. The
scattered wave is expressed as a divergent cylindrical wave
as

ps = P0

∞∑
n=0

AnH(1)
n (kr) cos(inϕ)eiωt, (18)

where H(1)
n is the Hankel function of the first kind for real

order n. The coefficients An are derived from the boundary
condition, which can be written at r = a as

i
kρc

∂

∂r
(pi + ps) =

−1
β

(pi + ps), for r = a, (19)

where β is the specific acoustic admittance [15] of the
cylinder i.e. β = ρc/γ, ρ is the mass density and c the sound
speed in the air. The coefficients An are given by :

An = −
(2 − δn0)in[iJ′n(ka) + (ρc/β)Jn(ka)]

iH(1)′
n (ka) + (ρc/β)H(1)

n (ka)
. (20)

4.5.2 Numerical setup

As shown in Figure 10, the pulse emitted by the line
source propagates from the left to the right of the domain,
and is scattered by the circular obstacle located at the center
of the domain.

The scatterer is located at the center of the computational
domain and its radius is a = 0.30 m. The receivers are
located on the 8 circles centered on the obstacle, with a
radius ranging from 0.5 m to 4.0 m distance, every 0.5 m.
All boundaries are considered as perfectly reflecting. The

L
in

e
so

ur
ce

Perfectly reflecting

Perfectly reflecting

Receivers

Obstacle

Figure 10 – Geometry of the numerical domain for the
study of a pulse scattered by a circular obstacle.

simulations duration is set to not exceed 0.06 s, which
is short enough to avoid any unwanted reflection at each
receiver location.

The spatial steps for the 12 grids are h =[0.0213, 0.0251,
0.0274, 0.0355, 0.0405, 0.0430, 0.0475, 0.0495, 0.0550,
0.0580, 0.0670, 0.0695] m, and the corresponding time steps
Ts are set at the Courant limit for each grid.

4.5.3 Results

The pressure scattered around the obstacle recorded by
the circle of receiver located at r = 0.5 m from the center
is shown in Figure 11 for f = 449 Hz. The results obtained
from the two numerical methods (TLM and FDTD) are in
agreement with the analytic solution.

TLM

FDTD

Analytic

0°

45°

90°

135°

180°

225°

270°

315°

0.20.40.60.81.0

f=449 Hz, ka= 5.00

Figure 11 – Polar diagrams of the scattered field for
f = 449 Hz calculated with the TLM, the FDTD and the

analytic solution at the distance r = 0.5 m from the center of
the scatterer.

Figure 12 shows the errors in two norms for the
frequency f = 449 Hz. In this case, each frequency
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requires a distinct fit in magnitude proportional to the
analytic solution magnitude. Therefore, the error should be
recalculated for each frequency. Although the global trend of
the error approaches the second order of accuracy, it can be
seen that the observed orders of accuracy is more fluctuating
than for the previous cases. This can be explained by the
normalization procedure of the magnitude for the numerical
method that is applied for one chosen direction of incidence.
A refined method for fitting the polar diagram might give
smoother orders of accuracy.
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Figure 12 – Two-norm and max-norm of the absolute
error (top) and their observed orders of accuracy (bottom)

for case 5, with f = 449 Hz.

This case could be extended to impedance circular
obstacles. This verification is only performed for a single
frequency. However, it could be extended to a frequency
range once the normalization procedure of the numerical
signals would have been clarified.

5 Conclusion
The proposed verification procedure have been applied to

five test cases, which have been implemented using two time
domain methods (FDTD and TLM) and a frequency domain
method (FDH). The expected second order convergence
rate is returned by the codes for most cases. In order to
complete this verification procedure, the observed order of
accuracy should be calculated for a given frequency range
and shown as a function of frequency. This would give
the asymptotic range for which the code returns a verified
results. As a general extension, test cases should also include
3D scenes. Finally, a validation procedure remains to be
formulated using larger and more realistic cases that have
been measured.

The code, its documentation and all related written
documents are going to be available online, and will be open
for contributions.
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