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The microelectronics industry is expressing an increased demand for the development of non-destructive tools and methods 
for health control and diagnostics in multilayered structures, including problems such as delaminations, inclusions and 
microcracks. In order to obtain a quantitative characterization of elastic properties and interfacial adhesion properties in 
multilayered structures, we aim to apply the V(z) method used in acoustic microscopy in a near future. This technique allows 
to measure the velocities of guided waves or to rebuild the reflectance function. Both of them are sensitive to material 
properties and interface quality. Thus, as far as the reflectance function is concerned, in this study we propose models for 
calculating the reflectance functions on multilayered structures by taking into account imperfect interfaces between the layers. 
A study was conducted to evaluate numerically the influence of the properties of the imperfect interface on the reflectance 
function. The imperfect interfaces were numerically modeled by interfacial layers with thicknesses much smaller than those of 
the other layers and the characteristic wavelength in this layer. 

1  Introduction 
There are two main boundary conditions for solid / solid 

interfaces. The first condition is that of the perfect rigid 
contact where the sets of stresses and displacements are 
transmitted from one layer to another [1][2]. The second is 
that of the slip boundary condition through which the 
normal stress and displacement components are transmitted, 
the shear stress vanishes and the horizontal component of 
the displacement is discontinuous [3]. 

On the basis of the transfer matrix method [2,4–6], two 
different models have been implemented in MATLAB®, 
dealing respectively with isotropic and anisotropic 
materials. 

These models have been presented in [7,8] for imperfect 
adherence conditions between two semi infinite half spaces. 
In the present work, we propose to use these models to 
study the adherence quality between layers in multilayered 
structures. 

2  Case of isotropic materials 

2.1  Theoretical background 
We consider a multilayered isotropic structure 

consisting of N layers (Figure 1). Each layer k of this 
structure has a thickness 𝑑𝑑𝑘𝑘 and the total thickness is equal 
to D. The multilayer is immersed in water (media 0 and N + 
1) and a longitudinal wave is assumed to be incident on the 
multilayer with an angle 𝜃𝜃0. 

The displacements and stresses existing at the top of a 
layer are connected to those of the base of the same layer 
by means of a layer transfer matrix. The continuity 
conditions then make it possible to establish a global 
transfer matrix resulting from the product of the transfer 
matrices of the successive layers. This global matrix allows 
the displacements and stresses of the top layer to be related 
to those of the bottom one. In the model, imperfect 
interfaces are modeled by an interfacial layer. The latter 
possesses a thickness much smaller than the wavelengths 
propagating in the medium. 

The imperfect interface layer has been modeled by a 
viscoelastic material whose properties vary according to its 
structure [8]. This virtual material obeys to the Maxwell 
model. Such a material is represented as a series association 
of a hookean spring and a purely viscous damper. The 
viscoelasticity has been described by an imaginary 
component in the elastic coefficients of the material 
constituting the interface layer. 

 

 

Figure 1: Multilayered structure geometry. 

Thus, the bulk modulus and the shear modulus of the 
interfacial layer are respectively: 
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where 𝐾𝐾0 is the bulk modulus at the low frequency limit ( 
corresponding to a liquid state); 𝐾𝐾∞ and 𝜇𝜇∞ are respectively 
the bulk and the shear moduli of the material at the high 
frequency limit (corresponding to a solid state); 𝜔𝜔 is the 
angular frequency (𝜔𝜔 = 2𝜋𝜋𝜋𝜋, with 𝜋𝜋 the frequency of the 
excitation signal); 𝜏𝜏 = 𝜂𝜂 𝜇𝜇∞⁄  is the relaxation time and η is 
the static viscosity. 
 

Parameters 𝐾𝐾0, 𝐾𝐾∞ and 𝜇𝜇∞ have been selected to match 
those of an epoxy resin [9]. Their values are displayed in 
Table 1. 

Table 1: Elastic moduli of the viscoelastic interfacial 
medium. 

𝐾𝐾0 𝐾𝐾∞ 𝜇𝜇∞ 
1.9 𝐺𝐺𝐺𝐺𝐺𝐺 3.6 𝐺𝐺𝐺𝐺𝐺𝐺 1.2 𝐺𝐺𝐺𝐺𝐺𝐺 

 
 The modification of the non-dimensional product 

parameter 𝜔𝜔𝜏𝜏 makes it possible to change the mechanical 
properties of the interface layer. If we vary the value of this 
parameter from 0 to +∞, the material constituting this layer 
can behave as an ideal fluid towards a solid in regard to the 
propagating waves. Indeed, Figure 2 shows that the 
imaginary part of the shear modulus of the viscoelastic 
material is maximal for 𝜔𝜔𝜏𝜏 = 1. Below the value 1, the 
imaginary part clearly dominates the real one, which results 
in an exacerbated dissipation property of the interface layer, 
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since the latter tends towards a liquid state. For values of 
𝜔𝜔𝜏𝜏 greater than 10 the shear modulus reaches a threshold 
equal to the value of the shear modulus of the material in its 
purely solid state. Thus, varying the value of this parameter 
makes it possible to simulate a degradation of the adherence 
quality which can be physically explained by the presence 
of defects such as delaminations [9]. 

  

 

Figure 2: Evolution of the real and imaginary parts of the 
shear modulus with respect to the parameter 𝜔𝜔𝜏𝜏. 

    2.2  Simulations and analysis 
A numerical study was conducted in order to observe 

the influence of the product 𝜔𝜔𝜏𝜏 on the evolution of the 
reflectance function for a bilayer consisting of 20 𝜇𝜇𝜇𝜇 thick 
aluminum and steel layers with an imperfect interface (h 
thickness), as displayed with bold lines on Figure 3. The 
simulations were obtained for an incident wave frequency 
equal to 100 MHz and the results are presented on Figure 4. 
In this figure, the incident angles are limited to 40° since 
the magnitude of the reflectance function is equal to 1 
beyond this value. 

 

 
Figure 3: Isotropic multilayered structure with an imperfect 
interface. 

 
The observation of Figure 4 reveals that the values of 

the reflectance functions for the incidence angle range from 
0 to 40 degrees tend to decrease when the value of 𝜔𝜔𝜏𝜏 
decreases, corresponding to an increase of the fluid 
fraction. The reduction of the reflectance function is 
explained by the increased dissipative effect of the interface 
layer due to the decrease of the value of 𝜔𝜔𝜏𝜏. These 
simulation results are in line with the behavior of the 
viscoelastic material shear modulus shown in Figure 2.  

 
To summarize, the significant decrease in the reflection 

coefficient for the values of 𝜔𝜔𝜏𝜏 ≤ 1 can be explained by the 
predominance of the dissipative phase of the interface 
material. Therefore, using a product 𝜔𝜔𝜏𝜏 within the range 
0≤ 𝜔𝜔𝜏𝜏 ≤ 1 will be preferable to simulate a loss of 
adherence at the interface. Experimentally, the presence of 
the fluid fraction can be related to a delamination at the 
interface in the studied zone. 

 

 

Figure 4: Magnitude of the reflectance functions 
obtained for multilayers containing perfect and imperfect 
interfaces with variable values of the product 𝜔𝜔𝜏𝜏. 

In order to verify the coherence of the numerical results, 
a comparison between reflectance functions obtained with 
perfect and imperfect interfaces with variable thicknesses 
and high values of 𝜔𝜔𝜏𝜏 has been performed. The 𝜔𝜔𝜏𝜏 value is 
set at 100 which corresponds pretty much to a welded 
contact at the interface considered in its solid state as 
illustrated by Figure 2.  

 

 

Figure 5: Comparison between the magnitude of the 
reflectance functions obtained for a multilayer with a 
perfect interface and multilayers containing imperfect 
interfaces with 𝜔𝜔𝜏𝜏 = 100 and variable thicknesses. 

Figure 5 shows a comparison between the reflectance 
functions obtained in the case of a perfect interface and two 
imperfect interfaces at a frequency of 100 MHz for the 
multilayered structure described in Figure 3. The highly 
reduced incidence angle range (6° ≤ 𝜃𝜃0 ≤ 9°) has been 
deliberately selected for this simulation for readability 
purposes, because the curves could not be discriminated for 
wider ranges. Indeed, for the standard incidence angle 
range, the correlation coefficient between the perfect 
interface and the imperfect ones ranges from 0.87 for 
ℎ = 50 𝑛𝑛𝜇𝜇 to 0.99 for ℎ = 5 𝑛𝑛𝜇𝜇. It is notable in this figure 
that the imperfect interfaces having a high value of 𝜔𝜔𝜏𝜏 
adopt a behavior very close to that of the perfect interface 
and all the more so as the interface layer thickness 
decreases.  

3  Case of anisotropic materials 

3.1  Theoretical background 
The non-perfect interface model used for anisotropic 

materials does not rely on the viscoelasticity of the 
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interfacial layer. Here, the interface layer is represented by 
a virtual orthotropic material containing cylindrical pores 
parallel to the interface [7] that can form an angle 𝜑𝜑 with 
respect to the sagittal plane. We limited our present study to 
the case of cylindrical pores parallel to the sagittal plane 
(𝜑𝜑 = 0°), which is chosen to be the 𝑥𝑥1 axis, as shown in 
Figure 6. The degradation of the adherence quality between 
two layers is taken into account by an increase of the 
modeled porosity. 

 Dealing with this model, the first step consists in  
obtaining the elastic constants of the solid phase of the 
porous material considered. To do this, the Hill's 
approximation allows to calculate the elastic moduli 
necessary to describe an isotropic material obtained from 
the elastic parameters of the anisotropic material 
constituting the layer located below the imperfect interface 
[10]. In a second step, these isotropic elastic moduli are 
integrated in the Christensen's two-phase composite model 
to extract the effective anisotropic elastic constants of the 
interfacial material [11]. 

The Hill's approximation consists in homogenizing the 
elastic moduli of an anisotropic material, considering that 
they possess intermediate values between the elastic moduli 
obtained with the Reuss [12] and Voigt [13] 
approximations. 

The bulk and shear moduli of the interfacial layer 
obtained via Hill's approximation are the following: 

 
   𝐾𝐾 = 𝐾𝐾𝑣𝑣+𝐾𝐾𝑟𝑟

2
    (3) 

 
   𝐺𝐺 = 𝐺𝐺𝑣𝑣+𝐺𝐺𝑟𝑟

2
    (4) 

 
where 𝐺𝐺𝑣𝑣, 𝐾𝐾𝑣𝑣 and 𝐺𝐺𝑟𝑟, 𝐾𝐾𝑟𝑟 are respectively the shear and bulk 
moduli calculated using the Voigt and Reuss 
approximations. 
 

These moduli are then incorporated in the Christensen's 
composite model and a porosity factor 𝐺𝐺 is set (0 ≤ 𝐺𝐺 ≤ 1) 
in order to extract the six independent elastic constants 𝐶𝐶11, 
𝐶𝐶22 = 𝐶𝐶33, 𝐶𝐶12 = 𝐶𝐶13, 𝐶𝐶23, 𝐶𝐶44 and 𝐶𝐶55 = 𝐶𝐶66. 

 
Within the frame of the Christensen's model, in order to 

get the effective interfacial elastic constants, two shear 
moduli noted 𝜇𝜇12 and 𝜇𝜇23 must be calculated. Referring to 
Figure 6, they respectively correspond to the shear modulus 
in the pores direction (along the 𝑥𝑥1 axis) and the transverse 
shear modulus (along the 𝑥𝑥2 axis). The evolution of these 
moduli with respect to the porosity is displayed on Figure 7. 

Figure 7 shows that both shear moduli decrease when 
the porosity factor increases. This was expected since the 
shear moduli are dependent on the presence of a solid 
medium. Therefore when the porosity equals 1 both shear 
moduli vanish. 

 

 

Figure 6: Representation of the anisotropic bilayer with the 
detailed structure of the imperfect interface layer. 

 

 

Figure 7: Evolution of the shear moduli 𝜇𝜇12 and 𝜇𝜇23 as a 
function of the porosity of the interfacial layer. 

3.2  Simulations and analysis 
The adhesion quality at the interface between two layers 

is dependent on the value of the porosity of the interface 
layer. Experimentally, an increase in the porosity 
coefficient is synonymous of an increased presence of 
delamination defects.  

 
Figure 8 illustrates the evolution of the reflectance 

function as a function of the porosity coefficient for a 
bilayer composed of a 20 𝜇𝜇𝜇𝜇 Nickel layer, a 500 𝑛𝑛𝜇𝜇 
interface layer and a 20 𝜇𝜇𝜇𝜇 Zinc layer. . The mechanical 
properties [14][15] of these materials are displayed in Table 
2. 

Table 2: Mechanical properties of the materials constituting 
the anisotropic bilayer. 

Material Stiffness 
constants (GPa) 

Density (𝑘𝑘𝑘𝑘/𝜇𝜇3) 

 
Nickel 

𝐶𝐶11 = 270 
𝐶𝐶12 = 170 
𝐶𝐶44 = 123 

 
8900 

 
 

Zinc 

𝐶𝐶11 = 165 
𝐶𝐶33 = 61.8 
𝐶𝐶44 = 39.6 
𝐶𝐶12 = 31.1 
𝐶𝐶13 = 50 

 
 

7130 
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The simulations have been conducted for an azimutal 
angle equal to zero in relation to the crystallographic axes 
of the materials, whose elastic constants are displayed in 
Table 2. The frequency of the incident wave on this 
multilayer is set to 100 MHz. 

 
In Figure 8, the incident angles are limited to 40° since 

the magnitude of the reflectance function is equal to 1 
beyond this value.  

 

 

Figure 8: Magnitude of the reflectance functions 
obtained for multilayers containing 500 𝑛𝑛𝜇𝜇 thick imperfect 
interfaces with variable porosities. 

In the case of anisotropic materials, the model used 
shows very little difference between perfect and imperfect 
interfaces for very small thicknesses, with respect to the 
incident wave frequency, of the imperfect interface layer. 
This might be due to the obtainment of the solid phase of 
the virtual porous interfacial material by Hill's 
approximation from the Zinc inferior layer. Indeed, the 
propagating waves might be barely affected by the medium 
transition for very thin interface layers. 

In order to fix that issue, we thus increased the thickness 
of the imperfect interface up to 500 𝑛𝑛𝜇𝜇 until seeing 
significant differences, especially concerning the peaks 
positions. This value is still much smaller than that of the 
effective layers. 

We define 𝛿𝛿 as the wavelength to thickness ratio 
calculated for a SH wave propagating in the interfacial 
material. The speed of a SH wave 𝐶𝐶𝑆𝑆𝑆𝑆 is calculated as 
follows [14] : 

𝐶𝐶𝑆𝑆𝑆𝑆 = �𝐶𝐶66
𝜌𝜌0

                                      (5) 

where 𝐶𝐶66 is the corresponding elastic coefficient of the 
interfacial material and 𝜌𝜌0 its density. 

For the considered values of 𝐺𝐺 in Figure 8, 𝛿𝛿 varies 
from 46 (for 𝐺𝐺 = 0.1) to 34 (for 𝐺𝐺 = 0.9).  
When P increases, the values of the shear moduli decrease 
(Figure 7). The decrease of these moduli is synonymous 
with the decrease of 𝐶𝐶𝑆𝑆𝑆𝑆 which implies the decrease of the 
associated wavelength. This, translates to the decrease of 
the  𝛿𝛿 ratio (with h kept constant). Finally, 𝛿𝛿 is dependent 
on 𝐺𝐺 and the increase  of 𝐺𝐺 implies the reduction of  𝛿𝛿. 

 
Figure 8 indicates that when the porosity factor 

increases, the shift of the peaks with respect to the perfect 
interface case increases significantly. Indeed, the 
calculation of the correlation coefficient between the 

perfect case and the imperfect ones gives the results 
presented in Table 3. 

Table 3: Evolution of the correlation coefficient with 
respect to the porosity factor. 

Porosity factor Correlation coefficient 
𝐺𝐺 = 0.1 0.75 
𝐺𝐺 = 0.5 0.22 
𝐺𝐺 = 0.9 0.09 

 
 
Thus, the study of the correlation coefficient and the 

peaks positions could be a way to characterize the 
adherence quality at the interface via experimental 
measurements. 

 
In order to verify the coherence of the simulation results 

for anisotropic multilayers, Figure 9 presents a comparison 
of the reflectance functions obtained between Nickel (20 
𝜇𝜇𝜇𝜇) on Zinc (20 𝜇𝜇𝜇𝜇) bilayers with different interfaces. One 
interface is perfect, the second is an interface layer of 100 
nm thickness with a porosity factor equal to 0.01 and finally 
an interface layer of 500 𝑛𝑛𝜇𝜇 thickness with the same 
porosity factor. Figure 9 illustrates the fact that for a very 
low porosity factor, the reduction of the thickness of the 
interface layer makes the value of the reflectance function 
tend towards the value obtained with a perfect interface. 
Indeed, the correlation coefficient between the perfect 
interface and the imperfect ones grows from 0.82 for 
ℎ = 500 𝑛𝑛𝜇𝜇 to 0.99 for ℎ = 100 𝑛𝑛𝜇𝜇. This can be 
explained by the fact that the wavelength of the waves 
inside the structure becomes much larger than the thickness 
of the interface layer. Hence, the influence of the interface 
layer tends to disappear. 

 

 

Figure 9: Comparison between the magnitude of the 
reflectance functions obtained for a multilayer with a 
perfect interface and multilayers containing imperfect 
interfaces with very low porosity and variable thicknesses. 

4 Conclusion and future work 
Models have been implemented to calculate reflectance 

functions for immersed multilayers. Two different models 
have been implemented to take into account isotropic and 
anisotropic materials. In each case, the quality of adhesion 
between successive layers was considered. Interfacial layers 
whose thicknesses are much smaller than the wavelengths 
involved represent the imperfect interfaces. 

 In the isotropic case, a virtual viscoelastic material 
models the interface layer and the quality of adhesion is 
affected by the viscoelasticity of the medium. For 
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anisotropic materials, an orthotropic porous material 
obtained using the Hill's approximation and the 
Christensen's composite model represents the interface 
layer. The quality of adhesion at the interface in the 
anisotropic case can be modified through the porosity factor 
and the orientation of the pores. 

Depending on the frequency of the incident wave, the 
studied structure can be just seen as a multilayer or a 
multilayer deposited on a substrate. The calculations have 
to be changed accordingly and works are in progress in 
regard to this latter case. 

In the results presented for the anisotropic imperfect 
interface layer, the pores were all directed along the 𝑥𝑥1 axis. 
In the future, the influence of the pores deviation from the 
𝑥𝑥1 axis will be studied.  

The reflectance functions obtained by modeling, will be 
included in algorithms allowing to compute the V(z) 
responses associated with them. Thus, it could be envisaged 
to characterize interface defects by experimental 
measurements based on the treatment of the V(z) responses.  
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