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Abstract 

Ultrasonic beam computation has grown more and 
more important during the latest years, specially for 
NDE applications. Indeed, it constitutes a helpful tool  
for the design of transducers, the definition of testing 
configurations, or the interpretation of experiments. 
The method developed at the French Atomic Energy 
Commission for field computation is based on the 
propagation of pencils, since this approach provides 
both numerical efficiency and accuracy, and since it is 
able to deal with complex configurations: arbitrarily 
shaped broadband transducers, components with 
complex shape and constituted of complex media. The 
derivation of the pencil method, in particular for 
complex materials, is addressed in this paper. A pencil 
is used to describe the contribution, at a given 
observation point, of an elementary wave generated 
by a point source located on the emitting surface of 
the transducer. One can demonstrate that the 
contribution of this elementary wave can be 
approximated by considering the evolution of a cone 
of rays, i.e. a pencil, in the vicinity of the geometrical 
path between this point and the observation point. A 
pencil is mathematically described by a four 
component vector, at any position along the 
geometrical path. Consequently, the propagation of a 
pencil between two points is given by a four by four 
matrix, linking two of these pencil vectors. This pencil 
propagation matrix is expressed as a function of the 
media and the interfaces crossed. When anisotropic 
media are involved, they are taken into account 
through their slowness curves that appear in the 
expression of the pencil propagation matrices. In the 
same way, curved interfaces can be considered. Thus, 
components as complex as heterogeneous, anisotropic 
and with curved inner interfaces can be considered. 
Inhomogeneous materials can also be treated. After 
the description of the method, some numerical 
examples of computed fields into complex media are 
given. 

 
Introduction 

Ultrasonic beam computation is of major interest in 
non destructive evaluation. Indeed, beam modelling is 
useful to help the interpretation of NDT experiments, 
and to assist the design of transducers, the definition 
of tests, etc. Computed beams are also used as inputs 
for beam / defect interaction modelling. For these 
reasons, the French Atomic Energy Commission has 
been developing a module dedicated to beam 
computation in its software platform for NDT 

expertise CIVA. The aim of this paper is to give an 
overview of the theory of pencils that is used to 
predict the ultrasonic fields in this module.  

To deal with realistic configurations of test, it is 
required that the method used is able to deal with 
various kinds of transducers (immersed, contact, 
phased arrays, etc.) and various kinds of components 
(anisotropic, heterogeneous, inhomogeneous, etc.). 
Numerical efficiency is also required for the intensive 
use of the model. For these reasons, analytical 
formulations are derived wherever it is possible, i.e. 
each time it does not imply any loss of generality.  

The radiation of the transducer is described 
mathematically by a diffraction integral (Rayleigh’s 
integral). Since no assumptions are made on the shape 
of the transducer, this integral is evaluated 
numerically. The emitting surface of the transducer is 
thus discretized into point sources, and the global field 
is a summation of the elementary fields of every point 
sources. Each point source emits an elementary field 
that is given by the Green function. This Green 
function is evaluated by means of the pencil method 
approximation, that is described in what follows. This 
method has been developed so that various kinds of 
components can be taken into account: isotropic, 
anisotropic, heterogeneous or inhomogeneous can be 
considered.  

The field is computed in terms of impulse responses 
in order to deal with wideband transducers. 

In the first part of this paper, the theory of pencils is 
described. The method used to evaluate an elementary 
field due to a point source at a given observation point  
is derived. In the second part, the propagation of 
pencils in the different types of materials is addressed. 
Isotropic, anisotropic, heterogeneous, and 
inhomogeneous media (for which the wave velocity is 
varying linearly as a function of the depth) are 
considered. In the third part, some examples of 
computed fields are shown. And finally, concluding 
remarks are given. 

 
The pencil method 

It is well known that a spherical wave propagating 
into an infinite homogeneous and isotropic medium 
can be approximated by a plane wave which 
amplitude decreases as a function of the inverse of the 
distance of propagation. This approximation is valid 
as soon as the distance between the point source and 
the observation point is greater than a couple of 
wavelengths. The pencil method allows to generalize 
this approximation to the case of complex media. 
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If one considers a point source immersed in a fluid, 
it emits a spherical wave that may be distorted when it 
crosses interfaces of complex shapes or when it 
propagates into complex media, such as anisotropic 
media. If an observation point is fixed, the 
geometrical acoustics principle says that the acoustical 
energy provided by the source at the observation point 
mainly propagates along a particular path, called the 
geometrical acoustics path, or Fermat’s path. This 
path starts at the source point and ends at the 
observation point, and the Snell-Descartes law applies 
at each interface along it. This path is also called 
stationary phase path, since it corresponds to the wave 
vector for which the phase is stationary when an 
angular spectrum decomposition is investigated [1, 3]. 

If this path is known, a wave vector, and thus a 
plane wave, is selected. A time of propagation tp can 
be evaluated along this path. If the point source is 
excited by a Dirac δ-function at time t=0, its 
contribution at the observation point will appear at 
time t= tp. The theory of pencils is used to evaluate the 
amplitude of this contribution. 

 
Definition of a pencil  

In order to evaluate the amplitude of the 
contribution, one studies the divergence of a pencil, 
following Deschamps [2] who developed the method 
in electromagnetics. A pencil is a cone of rays located 
around the geometrical acoustics path. Let the axial 
ray be the ray along this path, and the paraxial ray 
belonging to the envelope of the pencil (see figure 1).   

axial ray = stationary phase path

paraxial ray

axial ray = stationary phase path

paraxial ray

Pencil

 
 

Figure 1: Definition of the axial and paraxial rays. 
 
The vertex of the cone is located at the source point. 

The shape of the pencil can be described 
mathematically at any position along the stationary 
phase path if the position of the paraxial ray with 
respect to the axial ray is known. One then defines dx 
and dy, being the coordinates of the paraxial ray in a 
plane perpendicular to the axial ray. If dx=dy=0, the 
axial and paraxial rays coincide. If the direction of the 
paraxial ray is also known, one can evaluate the 
evolution of the pencil with the propagation. This 
direction is given by the projection of the slowness 
vector associated with the paraxial ray on the plane 
previously defined, say dsx and dsy. One then defines a 
four-component vector, called the pencil vector, 
constituted of these four quantities. 

To describe the propagation of a pencil, one uses a 
4x4 matrix L, called pencil propagation matrix, that 
sets a linear relation between two pencil vectors ψ and 

ψ’ describing the same pencil, but at different times. 
One has: 

 
ψLψ' ⋅=  (1) 

 
The components of L will be defined in the next 

parts of this paper, as a function of the media and 
interfaces through which the pencil propagates. One 
also defines four 2x2 sub-matrices A, B, C and D, so 
that: 

 









=

DC
BA

L  (2) 

 
The evolution of the amplitude of the elementary 

wave radiated by the point source is given by the 
evolution of the section of the pencil.  

 

source point

observation 
point

dS
dΩ

source point

observation 
point

dS
dΩ

 
Figure 2: Evolution of a pencil from the point 

source to the observation point. 
 
Let dΩ be the solid angle covered by the pencil at 

the point source and let dS be the section of the pencil 
at the observation point. The divergence factor is 
defined by DF2= dΩ / dS. It describes the divergence 
of the wave emitted by the point source and, 
consequently, the amplitude of this wave at the 
observation point. Since both dΩ and dS can be 
expressed with the help of ψ and ψ’, the divergence 
factor is also written as: 

 
Bdet2

1
2 sDF =−  (3) 

 
where s1 is the slowness in the medium of the source. 

This means that one just needs to establish the 
formulation of the pencil propagation matrix L in the 
different configurations to be treated (isotropic, 
anisotropic, heterogeneous and inhomogeneous 
media) to derive the amplitude of the contribution of 
the point source at the observation point. The different 
cases are addressed in what follows. 

 
Propagation of a pencil in an isotropic medium 

Let one considers a pencil propagating inside a 
homogeneous and isotropic medium. The pencil 
propagates from point M to point M’, and the 
corresponding pencil vectors are respectively ψ and 
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ψ’. The relation between these two quantities is 
merely given by a homothetic transformation, since 
dx’ and dy’ can be evaluated if dsx and dsy are known. 
The pencil propagation matrix Liso in this case is 
written as: 

 

ψ
10

11ψLψ'













=⋅= s

r
iso  (4) 

 
where r is the distance between M and M’, and s is the 
slowness of the wave under study, longitudinal or 
transversal, 1 is the 2x2 identity matrix and 0 the 2x2 
zero matrix. 

 
Propagation of a pencil in an anisotropic medium 

In an anisotropic component, the energy direction 
differs from the wave vector direction. The slowness 
surface, related to a type of wave, gives the evolution 
of the phase velocity as a function of the direction. Let 
sz=g(sx, sy) be the function defining this surface. For a 
given wave vector on the slowness surface, the 
corresponding energy direction is given by the normal 
to this surface.  

The axial ray of a pencil is located along the 
geometrical acoustics path, or stationary phase path, 
as mentioned previously. This path is defined by the 
energy direction in an anisotropic medium. The 
evolution of the pencil is then given by the evolution 
of the normal to the slowness surface, so that the 
second partial derivatives of g, denoted as gmn, are 
involved in the pencil propagation matrix. One has: 

 

ψψLψ' ⋅
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with g being defined in a basis so that sx=sy=0 
corresponds to the wave vector of the axial ray, and 
 

g
s

s snm

n m
z

x
n

y
m=

+∂
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 (6) 

 
and rk is the projection of the distance of propagation 
on a unit vector parallel to the wave vector. 

 
Propagation of a pencil in a heterogeneous medium 

A heterogeneous medium is described by a set of 
contiguous homogeneous media, possibly anisotropic. 
The propagation of a pencil in this kind of material is 
a succession of elementary propagations in 
homogeneous media. In other words, the propagation 

of the pencil can be described by the product of pencil 
propagation matrices for the different media. One has: 

 
ψLLLLLψ' ........ 11int22int3 properproperprop=   (7) 

 
where Lprop1,2,3,… are pencil propagation matrices 
related to the propagation in different media and 
Linter1,2,… are pencil matrices that describe the 
evolution of a pencil when reaching an interface. 
Indeed, refraction or reflection of the pencil leads to a 
deformation of the pencil. The curvature of this 
interface, mathematically described by the 2x2 
curvature matrix C, is involved in the evolution of the 
pencil, through the pencil propagation matrix for an 
interface, that writes: 
  

ψ
ΘΘ'CΘΘ'

0ΘΘ'
ψ' ⋅








=

−−−

−

TTTh 1

1

  (8) 

 
where the 2x2 matrices Θ and Θ’ represent the 
projection of the pencil on the interface in the 
direction of the axial ray, respectively before and after 
interaction with the interface, and h=k’cosθ’-kcosθ, 
with θ and θ’ the incident and refracted (or reflected) 
angles. 

For each reflection or refraction on an interface, one 
can calculate the reflection or transmission coefficient, 
related to the plane wave associated to the geometrical 
acoustics path. This quantity is not involved in the 
shape of the pencil, but it has to be considered as a 
global factor in the contribution of the point source. 

 
Propagation of a pencil in an inhomogeneous medium 

Attention is now paid to inhomogeneous media, that 
is to say media which mechanical characteristics are 
smoothly varying as a function of the position 
considered. Here, the study is focused on media for 
which the celerity of the wave varies linearly with 
respect to the depth. One has: 

 
gggg bzazyxc +=),,(   (9) 

 
a and b being constants.  

In this kind of material, one can demonstrate that 
the ray paths are arcs of circles, the centre of the 
circles being located at a depth zc= - a / b. Figure 3 
shows an illustration of the propagation of rays in an 
inhomogeneous material, for which the celerity 
increases with depth. The angle θT is defined as the 
tangent to the transmitted ray at the interface between 
the inhomogeneous medium and the medium where 
the wave previously propagated. 
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Figure 3: Ray path in an inhomogeneous medium. 
 
The time of propagation from the interface to the 

point on the curve ray to be considered is denoted as t. 
One wishes to evaluate a pencil vector at this position 
(say ψ’) with respect to the pencil vector at the 
interface (say ψ). The pencil propagation matrix, that 
links these two vectors, is written as: 

ψ
1C

BA
ψLψ' ⋅








=⋅=
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inhinh
inh  (10) 
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Examples 
Heterogeneous and anisotropic  component 

The component considered now is constituted of 
different volumes made of the same austenitic 
stainless steel (anisotropic), but with different crystal 
orientations. Two other volumes (on the left and right 
in figure 5) are constituted of isotropic ferritic steel. 
This is a typical description of weld [4]. The field 
plotted in figure 4 corresponds to the longitudinal (or 
quasi-longitudinal) waves transmitted into the 
component. One can compare this field with that 
radiated by the same transducer into a component 
made of ferritic steel (right hand of figure 4.). Some 

beam distortions due to the heterogeneous and 
anisotropic structure are emphasized. 

 

  
Figure 4. Field radiated into a heterogeneous 

anisotropic component (left) and in an isotropic 
component in the same conditions. 

 
Other examples of fields in complex components 

computed with Civa can be found in [5,6]. Some 
validations have been presented in [4] (comparisons 
with experiments) and [1] (comparison with finite 
element computation). 

 
Conclusion 

The pencil method used in the computation of 
ultrasonic fields in Civa software is presented in this 
paper. The method has been developed in order to 
enable the modelling of fields radiated inside 
anisotropic, heterogeneous components, and 
inhomogeneous components, possibly with complex 
geometries.  
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