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Abstract
The propagation of Rayleigh waves over an elastic

anisotropic half-space rotating at a constant angular rate
about a symmetry axis is analyzed using a recent ap-
proch based on the first intergrals of motion, including
Coriolis and centrifugal forces. The secular equation
obtained explicitly shows that the wave is dispersive
with a normal or an abnormal local dispersion. Nu-
merical results for cubic and tetragonal crystals are pre-
sented.

Introduction
The characteristics of ultrasonic waves propagating

in solids and their dependence upon various geomet-
ric and physical parameters have been under continued
study. The effects of electro-mechanic couplings, tem-
perature, pre-stress, acceleration, etc., on phase veloc-
ity or frequency provide the foundation for the develop-
ment of many acoustic sensors. Particularly, frequency
or phase velocity shifts due to rotation have been used
to make gyroscopes, i.e., angular rate sensors. These
sensors may operate with bulk waves in beams, rings,
plates, and shells, or with surface waves over a half-
space [1-6].

In this paper we show, in the particular framework
of the propagation of surface acoustic waves in a linear
anisotropic elastic half-space in rotation, the possibil-
ties offered by a novel mathematical formalism based
on the method of first integrals of motion [7]. Unlike the
classical approaches such as the partial waves method
or the Stroh formalism, this new method does not re-
quire the successive resolution of two eigenvalue prob-
lems for in order obtain the dispersion relation. Here
the secular equation is here derived in a direct manner
and explicitly. The effect of rotation on the characteris-
tics of guided waves is studied, including Coriolis and
centrifugal forces. A selection of numerical results con-
cerning the dispersion curves, sensitivity to direction of
rotation axis, and field profiles for cubic(m3m; 43m)
and tetragonal(4=mmm) crystals are presented and
briefly discussed.

Basic Equations
We consider a homogeneous anisotropic crystal oc-

cuping a half-spacex2 � 0; with the plane surface

x2 = 0 free of mechanical loads, and rotating at a con-
stant angular velocity
i aboutxi�axis. In the frame
in co-rotation with the body, the equations of motion,
the linear constitutive relations, and the boundary con-
ditions are�ij;j = �� ��ui + 2"ijk
j �uk +
i
juj � 
j
jui� ;�ij = cijklSkl; Skl = 12 (uk;l + ul;k) ;�i2 = 0; at x2 = 0;

(1)

where�ij is the stress tensor,cijkl is the elastic stiffness
tensor,Skl is the strain tensor,ui is the mechanical dis-
placement and� is the mass density. The second term
in the right-hand side of Eq.(1)1 is due to the Cori-
olis acceleration, both third and four terms are due to
the centrifugal acceleration. We study the propagation
of Rayleigh surface acoustic wave (SAW) in thex1-
direction, with spatial attenuation in thex2-direction.
To seek solutions, the mechanical displacement is taken
in the form of a plane harmonic wave,ui(xk; t) =ui(kx2) exp ik(x1 � vt) = ui(kx2) exp i(kx1 � !t),
with wave numberk in the x1-direction, phase veloc-
ity v = !=k; and frequency!. The possibility of
attenuation in thex2�direction is introduced through
the unknown functionsui(kx2) which are assumed to
satisfy both radiation conditions:ui(�1) = 0 andu0i(�1) = 0, whereu0i = dui=dkx2.
Explicit dispersion equations

Using the inhomogeneous harmonic plane waves in-
troduced above, the equations of motion are reduced to
ordinary differential equations with respect to dimen-
sionless variablex = kx2: In the present study only
two cases are examined:

Case 1- 
 =
1i (Rayleigh wave propagation in tetrag-
onal crystal 422, 42m, 4mm, 4/mmm rotating about thex1-axis)�11u001 � 11u1 + i�12u02 = 0;�22u002 � 22u2 + i�21u01 � i�23u3 = 0;�33u003 � 33u3 + i�32u2 = 0; (2)
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where�11 = c66; �22 = c11; �33 = c44;X = �v2;11 = c11 �X; 22 = c66 �X(1 + "21);33 = c44 �X(1 + "21); "1 = 
1=!;�12 = �21 = c12 + c66; �23 = �32 = 2X"1: (3)

Case 2- 
 =
2j (Rayleigh wave propagation in tetrag-
onal crystal 422, 42m, 4mm, 4/mmm rotating about thex2-axis)�11u001 � 11u1 + i�12u02 + i�13u3 = 0;�22u002 � 22u2 + i�21u01 = 0;�33u003 � 33u3 � i�31u1 = 0; (4)

where�11 = c66; �22 = c11; �33 = c44;X = �v2;11 = c11 �X(1 + "22); 22 = c66 �X;33 = c44 �X(1 + "22); "2 = 
2=!�12 = �21 = c12 + c66; �13 = �31 = 2X"2: (5)

In both cases, the boundary conditions Eqs(1)3 take
the form u01 (0) + iu2 (0) = 0;ic12u1(0) + c11u02 (0) = 0;u03 (0) = 0: (6)

As integrating factors for Eqs.(2)1;2;3 and
Eqs.(4)1;2;3 ; it is convenient to use the following
functions u01; iu2; u3; for Eq. (2)1;u02; iu1; iu03; for Eq. (2)2;u03; iu02; u1; for Eq. (2)3;u01; iu2; iu03; for Eq. (4)1;u02; iu1; u3; for Eq. (4)2;u03; iu01; u2; for Eq. (4)3 : (7)

Multiplying Eqs.(1) and Eqs.(4) by integrating fac-
tors, integrating by parts overx 2 [0;�1[, and taking
in account the boundary and radiation conditions atx =0;�1, we obtain for each case a non-homogeneous
system of nine linear algebraic equations which include
three integrable terms and six nonintegrable terms given
by respectively:

Case 1 F1 = 12u21 (0) ; F2 = 12u22 (0) ;F3 = 12u23 (0) ; (8)

F4 = i 0R�1 u01u02dx; F5 = i 0R�1 u02u3dx;F6 = i 0R�1 u1u2dx; F7 = 0R�1 u1u3dx;F8 = i 0R�1 u002u03dx; F9 = 0R�1 u01u03dx: (9)

Case 2 G1 = 12u21 (0) ; G2 = 12u22 (0) ;G3 = 12u23 (0) ; (10)G4 = i 0R�1 u01u02dx; G5 = i 0R�1 u01u3dx;G6 = i 0R�1 u1u2dx; G7 = 0R�1 u2u3dx;G8 = i 0R�1 u001u03dx; G9 = 0R�1 u02u03dx: (11)

These systems of equations atx = 0 may be written in

the formAmnFn = iu2 (0)u3 (0)Bm; m; n = 1; 2; :::9;CmnGn = iu1 (0) u3 (0)Dm; m; n = 1; 2; :::9;
(12)

where areAmn; Cmn; Bm, andDm are found explic-
itly in terms of coefficients of Eqs.(2), (4). The size9�9
of the matrices in Eqs.(12)1;2, is large, but the elements
are simple (many zero elements). From Eqs.(12), one
finds u22 (0) = 2 (�2=�) iu2(0)u3(0);u23 (0) = 2 (�3=�) iu2(0)u3(0); (13)u21 (0) = 2 (�1=�) iu1(0)u3(0);u23 (0) = 2 (�3=�) iu1(0)u3(0); (14)

where� = detAmn, � = detCmn;�2; �3; are the
determinants of matrices obtained by replacing corre-
sponding columns ofAmn by Bm, and�1;�3 are the
determinants of matrices obtained by replacing corre-
sponding columns ofCmn byDm.

The explicit secular equations sought are the compat-
ibility condition of nonlinear equation systems. From
Eqs.(13)-(14), we obtain for:

Case 1- 
 = 
1i �2 + 4�2�3 = 0; (15)
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Case 2- 
 = 
2j �2 + 4�1�3 = 0: (16)

The case of a half-space rotating about thex3-axis
(
 = 
3k) has been recently solved for tetragonal422; 42m; 4=mmm and orthorhombic crystals using
the polarization vector method [8].

Numerical results
In this section we present a selection of numerical

simulations which illustrate the gyroscopic effects on
the linear dispersion spectra and on the profiles ver-
sus depth of the mechanical displacement components
of generalized Rayleigh waves propagating along[100]
axis in the plane(010) for Si (silicon), GaAs (gal-
lium arsenide) and TiO2 (rutile). The Rayleigh wave
velocity is normalized by the shear bulk wave velocityv6 = (c66=�)1=2. Figures 1-3 give the variation of the
phase velocity of the rotation-perturbed Rayleigh wave
versus rotation rate about two symmetry axis. The dis-
persion is always stronger for the rotation axis aligned
with the propagation direction. We observe, for three
selected materials a normal dispersion i.e the phase ve-
locity decreases in function of rotation rate. The weak
range of variation of rotation rate is fixed in view of ap-
plications, consequently,"1;2 can be considered a small
parameter and this suggests that one may tackle approx-
imately Eqs.(15)-(16) via a perturbation technique. The
influence of centrifugal force on dispersion spectra may
be significant on the range of rotation rate(w 18%).

In order to obtain the profile of the three components
of the field of displacement, it is supposed that the func-
tions ui are in exponential formui = Ai exp(�kx2);
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Figure 1: Phase velocity dispersion curves for Si
crystal as a function of rotation rate.
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Figure 2: Phase velocity dispersion curves for GaAs
crystal as a function of rotation rate.
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Figure 3: Phase velocity dispersion curves for TiO2
crystal as a function of rotation rate.

where� is a decay constant. By substituting the dis-
placement fieldui = Ai exp(�!x2=v) exp i(!=v)(x �vt) into the boundary conditions Eqs.(1)3 and by using
the known expression the velocity of phase of Rayleigh
wavesvR = vR(!) one obtains a homogeneous sys-
tem which admits a non trivial solution, if the decay
constant (or attenuation factor)� satisfy a characteristic
equation of the third degree in�2. As in the usual proce-
dure, a sorting (Re�� > 0; � = 1; 2; 3;) among the six
roots must be made to satisfy the radiation conditions
(eliminating the case of leaky surface waves). Finally
by setting an amplitude on the surface or the acoustic
energy flow density vector, one can find explicitly the
fields and plot the profiles.

The distributions of the normalized displacement
components according to the normalized distance (with
wave length) from the free surface are shown in Figures
4-6. For two rotation axes, the effects of rotation rate on
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Figure 4: Normalized components of mechanical
displacement for Si crystal as a function of depth (in

wavelengths).
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Figure 5: Normalized components of mechanical
displacement for GaAs as a function of depth (in

wavelengths).
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Figure 6: Normalized components of mechanical
displacement for TiO2 as a function of depth (in

wavelengths).

the penetration depth of the generalized Rayleigh waves
are insignificant and as for non rotating crystals, the
larger anisotropy factorA = 2c66=(c11�c12) decreases
less the damping of the oscillations. The displacement
components are normalized byu20 the amplitude ofu2

at the free surface. We note the presence of a smallu3
is caused by rotation.

For the three crystals chosen to illustrate the results,
the dispersion is locally normal, however some other
simulations based on Stroh formalism (not reproduced
here) have shown for commonly used materials such as
PZT-5H piezoelectric ceramic, an abnormal dispersion
i.e a Rayleigh wave velocity increasing locally when the
rotation ratio increases. This observation is in accord
with results found in Refs. [5, 6].

Finally note that in general, a linear rotation-
sensitivity is researched in design of gyroscope devices.
Conversely the insensitivity to the rotation is sometimes
desirable for the frequency stability of sensors mounted
on rotating structures.
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