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Abstract

In this communication a new model for the genera-
tion of ultrasonic waves in waveguides made of a fer-
romagnetic material is presented. The model comprises
three stages: in the first one we solve the purely elec-
tromagnetic problem of the distribution of the electro-
magnetic (EM) field set up in the metallic material by
the exciting sources. Then the linearized constitutive
equations for the magnetostrictive effect are found in
order to compute the mechanical surface stresses and
volumetric forces existing in the solid (the terms corre-
sponding to Lorentz forces are also computed for com-
parison). At this stage, several simplifying assumptions
are made: small skin depth penetration of the EM field,
strong bias axial field and weak coupling of the EM
and elastic fields. The last step of our model is the use
of modal analysis to quantify the coupling between the
electromagnetic and elastic fields. The excited mechan-
ical wave is computed as an orthonormal expansion of
propagating modes in the waveguide, where the ampli-
tude coefficients are dependent on frequency.

The performance of this new method is demonstrated
by computing the amplitude of the propagating longitu-
dinal modes (L(0,m)) excited in a ferromagnetic pipe
for a given solenoid configuration.

The advantage of this new model is that numerical re-
sults can be obtained with greater simplicity when com-
pared with previous schemes found in the literature. Its
practical applications include ultrasonic generation in
travelling wave non destructive testing (NDT) systems,
magnetostrictive delay lines and magnetic-based posi-
tion sensors.

1 Introduction and state of the art

Generation of ultrasound in waveguides by electro-
magnetic fields has found many applications in science
and engineering. Among them we can cite: magne-
tostrictive delay lines [1], linear position sensors [2],
and non destructive testing (NDT) of structures through
propagating waves [3]. In this communication we
present a new model for the generation of ultrasound in
ferromagnetic pipes. The physical problem that we will
describe is shown in figure 1. The ultrasonic waveu is
generated in the pipe by a combination of a bias mag-
netic fieldH0, provided by the magnet, and a dynamic
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Figure 1: Physical setup for the electromagnetic
generation of ultrasound.

field H1 caused by the coil:

H(t) = H0 + H1e
jωt with H1 ≪ H0. (1)

The earliest model, developed by Williams [4], deals
with generation in wires which have a small diameter
compared to the wavelength. Therefore it was enough
to solve the simple one dimensional equations; but the
results are not applicable to bigger structures like pipes.
Boltachev [5] tackled the full three dimensional case,
proceeding in three steps: Fourier transform of the cou-
pled magnetoelastic partial derivative equations; solu-
tion of the corresponding algebraic problem; and then
inverse transform of the equations back into the spa-
tial domain. His model has been recently checked and
compared to the experimental results by Sablik [6], but
due to its complexity and number of unknown variables,
only qualitative agreement has been found.

The outline of this paper is as follows: in the next
two sections we will respectively consider the physics
of the electromagnetic generation of ultrasound and the
propagation of mechanical signals in a waveguide with
cylindrical symmetry. Based on this material, the model
will be introduced in section 4. Some numerical results
from a simulation are shown in section 5. At the end of
the paper we draw some conclusions.

2 Electromagnetic generation of ultrasound
With the setup of figure 1, two electromagnetic ef-

fects can generate mechanical waves of ultrasonic fre-
quency in metals. The first is the Lorentz force of the
bias field acting on the induced (eddy) currents in the
pipe. This effect is present in all metals. In ferromag-
netic metals we encounter a second source of mechani-
cal motion, magnetostriction [7], which is the deforma-
tion and displacement of magnetic domains.

The behavior of ferromagnetic metals where both ef-
fects coexist has been described in [8], and depends ba-
sically on the bias magnetic fieldH0. For low bias,
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magnetostriction is the stronger effect; however, as
field increases, the metal saturates magnetically, and
the Lorentz force mechanism, which is linear with fre-
quency, eventually dominates. In this paper we are in-
terested in the study of the first situation.

Under a sufficiently strong bias field (H0 ≫ H1) it
is found that the magnetostrictive behavior of a ferro-
magnetic metal is both linear and non hysteretic [7],
and linear equations couple the mechanical and mag-
netic variables:

σ = c
H · ǫ − e

T · H
B = e · ǫ + µǫ · H.

(2)

The notation mirrors the one used in piezoelectricity
and is normalized in standard IEEE 319 (1973). The
coupling term is given by the magnetoelastic tensore,
whose form depends on the symmetry class of the solid
and the direction of the bias field.

3 Mechanical behavior of the waveguide
The solution of the mechanical wave equation for

the case of cylindrical symmetry was developed by
Pochhammer and Chree in the 19th century, and the first
numerical results were obtained by Gazis in 1959 [9].

A solid cylinder or a pipe supports three families of
permitted (propagating) modes: torsional T(0,m), lon-
gitudinal L(0,m), and flexural F(n,m). The first two
have symmetry of revolution around the waveguide’s
axis. A signal applied to the waveguide will in general
excite all the propagating modes within its frequency
band.

To find the relative amplitude of the excited modes,
we use modal analysis [10], which is based upon the
property of orthonormality of the permitted modes.
Thus, a generic signal of a given frequency,û(r, θ, z),
can be decomposed into a finite number of propagating
modes and an infinite number of non propagating ones:

û(r, θ, z) =
∑

p

ap(z)ũp(r, θ) +
∑

p′

ap′(z)ũp′(r, θ).

(3)
The non propagating modes (denoted with a prime) are
needed to satisfy the boundary conditions and can be
neglected in points far from the generation region.

To perform the numerical computations involved in
the Pochhammer-Chree theory, a set of routines in the
Matlab environment were written. The software, named
PCDISP, can be used for the following tasks:

• Dispersion curves: phase and group velocity de-
pendence on frequency.

• Mode profiles: distribution of displacement vector
and stress tensor.
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Figure 2: Geometry for the computation of the
distribution of the electromagnetic field.

• Modal analysis: computation of modal amplitudes
excited by arbitrary external forces.

PCDISP is described in more detail in reference [11].

4 Outline of the model

We will develop the new model in three steps. In the
first part the electromagnetic dynamic field created in
the pipe by the generating solenoid will be computed.
The mechanical forcing terms (forces and stresses) will
then be computed in a linear approximation. Finally,
the amplitudes of the propagating modes effectively ex-
cited in the waveguide are calculated by modal analysis.
The complete ultrasonic signal can be formed as an ex-
pansion of a finite number of orthonormal modes, with
amplitude coefficients dependent on frequency.

4.1 Electromagnetic field distribution

The problem of the electromagnetic field distribution
is solved in the approximation of weak coupling (i.e.,
non influence of mechanical deformations on the mag-
netic field), by considering the wave equation in terms
of the potential vectorA(r, z) [12]:

∇2
A − µσ

∂A

∂t
= −µJs. (4)

The setup for the problem is given in figure 2.
The solution is further simplified if the skin depth

penetrationδ = (2/ωµσ)1/2 is small compared with
the thickness of the tube,b − a. In this case there is an
approximate solution:

Hz(r, z) = Hzb(z)e−(1+j)(b−r)/δ, Hr(r, z) ≃ 0, (5)

where Hzb(z) is the axial field in the outer surface
(r = b) of the pipe. This situation where the radial field
can be neglected compared with the axial field also sim-
plifies the description of the magnetostrictive behavior
of the pipe.
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4.2 Coupling terms
Once the distribution of the field is known, the mag-

netostrictive stress tensor in the pipe can be computed
by use of equation 2. At this point, two more assump-
tions are made: first, we regard the metal as elastically
isotropic, and simplify the compliance tensor in equa-
tion 2; second, the application of a strong bias fieldH0

in the axial direction reduces the matrix of piezomag-
netic coefficients to the following form [7]:

d =




d15 0
d15 0

d31 d31 d33 0


 (6)

The stress in the metal caused by the magnetostrictive
effect can be given as:

σms = −e
T · H, (7)

whereH is the magnetic vector field computed before
ande = d · cH . The volume force field is found as the
divergence of the stress tensor:

fms = ∇ · σms.

4.3 Modal analysis
The final step of our model is computing the ampli-

tudes of the propagating modes generated in the waveg-
uide. With the arrangement of figure 1, it is clear that
only modes with cylindrical symmetry will be excited.
Further, torsional modes are excluded because the forc-
ing terms have no azimuthal (eθ) component. Therefore
we will only be concerned with the longitudinal modes
L(0,m), which have a displacement vector with the gen-
eral form:

ûp(r, θ, z) = up(r)e
−jξpz = [urp(r), 0, uzp(r)]e

−jξpz.
(8)

The amplitudes of the propagating modes in equation 3
can be found by performing an integral which extends
to the generation areaRg [10]:

ap(z) =
e−jξpz

4Pp

∫

Rg

ejξpz′ [fs
p (z′) + fv

p (z′)] dz′. (9)

The termfs
p is the coupling of the surface stress to a

given mode, and is found by integratingσ̂ms around the
surface of the tube∂D:

fs
p (z) = −jω

∮

∂D
[u∗

p(r) · σ̂ms(r, θ, z)] · en dl. (10)

Similarly the coupling of the volume forcêfms is deter-
mined by taking the integral in the cross section of the
tubeD:

fv
p (z) = −jω

∫∫

D
[u∗

p(r) · f̂ms(r, θ, z)] dS. (11)

The displacement profile of the mode,up(r), as well as
the numerical integrals of equations 9-11 are computed
with the PCDISP package described in section 3.

5 Numerical results
The behavior of model is checked with a simulation.

Generation of ultrasound takes place in an iron pipe
with the setup shown in figure 2 and the data of table 1.
The magnetic and magnetostrictive parameters for iron
are taken from reference [13].

Table 1: Data of the iron tube used in the simulations.

Inner radiusa 3 mm
Outer radiusb 4 mm
Bias magnetic fieldH0 37 000 A/m
Magnetizationµ0M0 2.07 T
Rel. permeabilityµri 4.4
Magnetostr. coeff.d33 −2.8 × 10−10 m/A
Conductivityσ 9.9 × 106 Ω−1m−1

Shear modulusG 7.7 × 1010 N/m2

Coil lengthLs 10 mm
Coil radiusRs 9 mm

The result of the simulation of the magnetostrictive
generation is shown in figure 3, where the transfer func-
tion:

|ap(z, ω)|

I(ω)
,

for the two longitudinal modes L(0,1) and L(0,2) is
plotted. It can be checked with PCDISP that these are
the only permitted modes below 1 MHz. The largest
generation efficiency occurs at low frequencies (be-
tween 20 kHz and 200 kHz), when the wavelength of
the ultrasonic wave is bigger than the length of the
solenoid (λ > Ls), so that constructive interference
happens. As we approach the cutoff frequency of
mode L(0,2), the phase velocity of mode L(0,1) decays
quickly, and destructive interference (becauseLs > λ
no longer holds), causes a decrease in the amplitude
of the ultrasonic wave. Above the cutoff frequency of
L(0,2), this mode dominates. This behavior agrees well
with the results from other researchers ([4] for exam-
ple).

6 Conclusions
In this communication, a new model for the mag-

netostrictive generation of ultrasound in cylindrical
waveguides has been presented. The model is valid un-
der the assumptions of strong axias bias field, small
penetration depth of the magnetic field in the metal,
and mechanical isotropy. The method involves the fol-
lowing steps: (a) computation of the electromagnetic
field; (b) finding the the coupling mechanical forces and
stresses due to the magnetostrictive effect; and (c) com-
putation of the amplitude of excited modes by modal
analysis. This model has the advantage of providing
analytical (closed) solutions, with computations consid-
erably simpler than other existing techniques.

WCU 2003, Paris, september 7-10, 2003

1465



0 100 200 300 400 500 600 700 800 900 1000
−140

−130

−120

−110

−100

−90

−80

−70

−60

−50

−40

Am
pli

tud
e (

dB
)

Frequency (kHz)

L(0,1) 

L(0,2) 

Figure 3: Relative amplitudes of modes L(0,1) y L(0,2) generated in the waveguide by the magnetostrictive effect
up to a frequency of 1 MHz.
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