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Abstract
The Fast Factorised Back-Projection (FFBP) algo-

rithm has received considerable attention recently for
SAS image reconstruction. The FFBP algorithm pro-
vides a means of trading image quality and/or resolu-
tion for a reduction in computational cost over stan-
dard Back-Projection. In this paper we describe FFBP
for SAS image reconstruction and compare it to the
Wavenumber algorithm in terms of computational cost
and image quality.

The FFBP algorithm significantly out-performs stan-
dard Back-Projection. However, we have found that
FFBP is out-performed by the Wavenumber algorithm.
Further investigation is required to determine which al-
gorithm is more desirable for motion compensation and
multiple-receiver reconstruction.

Introduction
Synthetic Aperture Sonar (SAS) is an underwater

imaging technique that provides higher resolution than
conventional side-looking sonar. Moreover, SAS im-
age resolution is independent of range and frequency
[1]. The reconstruction of SAS imagery is achieved by
synthesizing a larger aperture using a coherent summa-
tion of the echo data. SAS image reconstruction is a
matched filter operation with the range variant point-
spread function of the sonar system. The various dif-
ferent reconstruction algorithms perform this matched
filter operation.

The Wavenumber (or Range-Migration) algorithm
utilises the Fast Fourier Transform (FFT) to perform the
matched filtering in the spatio-temporal frequency do-
main [2]. Utilisation of the FFT results in a significantly
reduced computational cost. Thus, the Wavenumber
algorithm has become a popular choice for SAS im-
age reconstruction. Algorithms such as Chirp-Scaling
utilise the FFT to similar effect. The FFT-based algo-
rithms require regularly sampled echo data. Therefore,
reconstruction from an arbitrary collection geometry is
non-trivial. Reconstruction from multiple-receivers and
motion compensation is challenging using such algo-
rithms.

The Back-Projection algorithm does not require reg-
ularly sampled echo data and is well-suited for recon-
struction from an arbitrary collection geometry. How-
ever, Back-Projection is much slower than the FFT-

based algorithms [3]. Recently, a modification of the
Back-Projection algorithm was proposed. Fast Fac-
torised Back-Projection provides a means of trading im-
age quality and/or resolution for a reduction in compu-
tational cost over standard Back-Projection [4].

In this paper, the FFBP algorithm is described and
compared to the Wavenumber algorithm in terms of
computational cost and image quality. Computational
cost is determined theoretically and image quality is
determined from images reconstructed with our imple-
mentation of the FFBP and Wavenumber algorithms on
data simulated with the parameters of our Kiwi-SAS
system. We have found that the FFBP algorithm sig-
nificantly out-performs standard back-projection, but is
out-performed by the Wavenumber algorithm.

Back-Projection
The Back-Projection algorithm has been used ex-

tensively for Computed Tomography (CT) in Medical
Imaging. It has since been adapted for the SAR/SAS
imaging geometry [3]. The algorithm operates byback-
projecting each range data-sample along an arc in the
reconstructed image. Each arc corresponds to a spher-
ical shell centered at the given aperture position with a
radius corresponding to the given range. Reconstruc-
tion is achieved since targets interfere constructively at
the points where the back-projected arcs coincide.

The back-projected images0 (x; y) is given bys0 (x; y) = 1Z�1d �r; y0� exp (j2kr) r dy0; (1)

whered (x; y) is the baseband echo data,k = 2�f=
is the wavenumber of the carrier, andr =qx2 + (y0 � y)2: (2)

A further filtering step is required to yield the recon-
structed images (x; y) = h (x) ? s0 (x; y) ; (3)

where? denotes convolution andh (x) = 1Z�1 juj exp (j2�x u) du: (4)

WCU 2003, Paris, september 7-10, 2003

527



(a)

(b)

Figure 1: The FFBP algorithm achieves a reduction
in computational complexity by recursive factorisation

and decimation of the echo data. An example
factorisation is shown in (a), the resultant hierarchy of

data-sets is shown in (b).

Back-Projection is computationally expensive with a
computational cost of orderM �N �P for P aperture
positions and a reconstructed image of sizeM�N pix-
els. The Back-Projection algorithm is slow compared to
the Wavenumber algorithm, which achieves a computa-
tional cost of orderM � N � log2 (P ) by utilisation
of the FFT [3]. However, Back-Projection does have
some advantages. In particular, it lends itself easily
to arbitrarily sampled collection geometries (assuming
adequate sampling), which is useful for reconstruction
from multiple receivers and for motion compensation.

Fast Factorised Back-Projection

The Fast Factorised Back-Projection algorithm
(FFBP) was recently developed for CT and adapted for
SAR/SAS [4]. FFBP provides a means of trading image
quality and/or resolution for a reduction in computa-
tional cost. The algorithm is performed in two parts: 1)
The echo data is recursively factorised into a number of
decimated data-sets for subimages of the reconstructed
image, 2) Each data-set is back-projected to the corre-
sponding subimage. A computational gain is achieved
through decimating the data in the factorisation step.
However, doing so introduces an error that degrades the
image quality.

The echo data is factorised in a number of stages.
At each stage the reconstructed image is further subdi-
vided into smaller subimages with corresponding data-
setsd(s)mn as shown in Fig. 1. The superscript(s) de-
notes the stage and the subscriptmn is the index of the
subimage. The data-set for a given subimagemn in the

Figure 2: At each stage of the FFBP algorithm,
groups of along-track samples (from the appropriate

data-set in the previous stage) are combined and
focused to the centre of each subimage. This

introduces a far-field approximation errorrerr.
current stages is given byd(s)mn (x; yq) = (q+1)Q�1Xp=qQ d(s�1)m0n0 (x��rpq;mn; yp)� exp (jk�rpq;mn) ; (5)

whered(s�1)m0n0 is the data-set for the subimage in the pre-
vious stage that contains the subimagemn. The along-
track samples are combined such that the data is fo-
cused at the subimage centre.�rpq;mn = (yp � yq) sin �q;mn; (6)

is the delay required to focus at the centre of the subim-
agemn, where�q;mn is the angle fromyq to the subim-
age centre. The along-track sample rate is decimated by
the factorQ and the new sample positions are given byyq = 1Q (q+1)Q�1Xp=qQ yp: (7)

This is illustrated in Fig. 2. Fewer range samples are
required for each data-set as the subimages decrease in
size. This combined with the along-track decimation
of the data gives the FFBP algorithm its computational
gain.

A far-field approximation error is introduced at each
stage of the algorithm when combining subsequent
along-track samples as described by (5). The approx-
imation errorrerr is illustrated in Fig. 2 and the maxi-
mum bound of this error is given by [5]jrerrj < �y Ly4 xmin (8)

for a linear collection geometry, where�y is the along-
track sample spacing,Ly is the size of the subimage
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in the along-track dimension, andxmin is the minimum
range of the reconstructed image. The approximation
error at each stage determines the quality of the recon-
structed image and the computational gain.

At the final stage of the algorithm each data-set is
back-projected to the corresponding subimage (as de-
scribed in the previous section) yielding the recon-
structed image. Ideally, at this stage each subimage is
a single pixel with dimensions of the maximum system
resolution and the back-projection step is trivial. Simi-
larly, at any intermediate stage the data-sets can be low-
pass filtered (to prevent aliasing) and back-projected
to pixels with dimensions of the subimage yielding a
lower resolution reconstruction.

Computational Cost
The computational cost of FFBP is largely dependent

on the desired image quality and the choice of factorisa-
tion. At each stage the computational cost of factorising
the data is given byC(s) = N (s)mn �N (s)x �N (s)y ; (9)

whereNmn is the number of subimages, andNx andNy are the number of range and along-track samples
per subimage data-set. The computational cost of the
final back-projection step is given byCbp = N (S)mn �M (S) �N (S); (10)

whereM andN are the number of range and along-
track image pixels per subimage at the final stageS.
The total computational cost is given byC = SXs=1C(s) + Cbp: (11)

Results
Two performance factors were compared between

the FFBP and Wavenumber algorithms: computational
cost and image quality. The theoretical computational
cost (detailed in the previous section) was used to com-
pare the two algorithms since a direct comparison of the
algorithm implementations would be biased by coding
efficiencies. In particular, the Wavenumber algorithm
has a clear advantage due to the use of highly opti-
mised FFT code. The comparison of image quality was
assessed by simulating ideal point-targets and compar-
ing the reconstructed imagery obtained using our im-
plementations of the algorithms.

The minimum computational cost of the FFBP al-
gorithm is shown in Fig. 3 for varying image and al-
gorithm parameters. TheM � N � log2 (P ) cost of
the Wavenumber algorithm is assumed. Here we have
demonstrated that FFBP is more efficient than standard
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Figure 3: Computational cost of the FFBP and
Wavenumber algorithms normalised with respect to

standard back-projection for varying (a) approximation
error, (b) number of pings, and (c) image resolution

(number of stages)

Back-Projection and approaches the computational effi-
ciency of the Wavenumber algorithm for large approx-
imation errors of order�=4. The efficiencies of both
the Wavenumber and FFBP algorithms increase with
the number of pings and image size. The computational
cost of FFBP can be further reduced by truncation of the
factorisation step and back-projection to a lower resolu-
tion image.

Echo data for a line of point-targets was simulated
using the parameters of the Kiwi-SAS system [6]. The
images reconstructed using our implementations of the
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FFBP and Wavenumber algorithms are shown in Fig. 4.
The FFBP algorithm with a low approximation error of�=32 yields similar quality imagery to the Wavenum-
ber algorithm. Both algorithms accurately reconstruct
the image. However, for larger approximation errors
the quality of the FFBP imagery degrades quickly. At
an approximation error of�=4 most of the energy is
contained in thesidelobes of the reconstructed targets.

Conclusions
The FFBP and Wavenumber algorithms have been

compared in terms of computational cost and image
quality. We have found that FFBP only achieves com-
putational efficiency comparable to the Wavenumber al-
gorithm for large images and significant degradation
in image quality. The Wavenumber algorithm out-
performs FFBP in this respect. However, further re-
search is required to determine if FFBP is more suited
to multiple-receiver reconstruction and motion compen-
sation.
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Figure 4: Reconstructed imagery of a line of point
targets simulated using the parameters of the
Kiwi-SAS system and reconstructed using (a)

Wavenumber algorithm, (b) FFBP (�=32 error), (c)
FFBP (�=8 error), (d) FFBP (�=4 error).
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