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Abstract 
   The transient closed-loop acoustic streaming, 
excited due to nonlinear processes in viscous and 
thermal boundary layers, is studied numerically in an 
annular resonator equipped by a short stack. A single 
purely propagating wave is excited by proper phasing 
of two localised acoustic sources. The ratios of the 
viscous boundary layer depth to the resonator 
transverse dimension are expected to be weak (quasi-
adiabatic regime). The Reynolds stresses resulting 
from the nonlinear processes in boundary layers are 
incorporated as external sources in a semi-opened 
numerical code of fluid dynamics. The acoustic 
streaming is computed by the finite volumes 
numerical method. The results show that a 
characteristic time of acoustic streaming stabilization 
decreases with increase of the volume occupied by the 
stack and with increase in the number of the stack 
plates. 
 
Introduction 
 When an acoustic field is sustained in a resonator, a 
streaming is excited due to nonlinear phenomena in 
the viscous and thermal boundary layers [1]. In 
particular, for an annular resonator, the toroidal 
geometry may lead to a closed-loop acoustic 
streaming [2]. The acoustic field can be generated and 
amplified in an annular resonator by installing a stack 
(a set of equidistant parallel plates) and imposing a 
temperature gradient along the latter (annular 
thermoacoustic prime-mover [3]). The convective heat 
transport induced by the acoustic streaming modifies 
the temperature distribution along the stack and 
disturbs dramatically the amplification process of the 
acoustic wave [2, 4]. Independently of the generation 
mode of the acoustic field in an annular resonator 
(stack heated inhomogenously or piezoelectric 
sources), an acoustic wave propagating over a stack 
(initially at constant temperature) pumps heat from 
one edge towards the other, providing a temperature 
gradient along the stack [3]. The disturbance induced 
by the acoustic streaming reduces the efficiency of 
this annular thermoacoustic refrigerator. 
   The acoustic streaming development in annular 
resonators got a particular interest due to its 
importance in the characterization of the annular 
thermoacoustic devices. Even though this nonlinear 
phenomenon was studied analytically [5], no precise 
solution was obtained and the concerned mode of 
streaming excitation was only due to the bulk 

attenuation of acoustic waves. In a recent paper [6], a 
theory was developed for the transient acoustic 
streaming in an acoustitron (annular resonator with 
driven walls). The ratio of the viscous boundary layer 
depth νδ  to the waveguide width D was found to be 
the dominant parameter in the acoustic streaming 
stabilization.  
   In the study presented below the acoustic field in the 
annular resonator is sustained by two sinusoidal 
localized wave sources. They are characterized by the 
width d , separated by a distance a , oscillating at the 
same frequency f  with a relative phase shift ϕ , and 
inducing normal vibration of the waveguide walls 
with the velocity amplitude 0v  (see Fig. 1). Although 
each source excites separately a standing wave, the 
wave resulting from their simultaneous action can be 
decomposed into two counter-propagating waves with 
different (in general) amplitudes. The ratio of the 
amplitudes can be controlled by varying the 
parameters a  and/or ϕ . 
 

 
Figure 1 : Two wave sources annular resonator 

equipped by a stack. 
 
   Assuming a waveguide width D  much less than the 
acoustic wavelength λ  ( D>>λ ), the toroidal 
geometry of the resonator can be developed in an 
equivalent straight one [2]. The wave propagation and 
the acoustic streaming are then studied in a straight 
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channel defined by 0R2Lx0 π=≤≤  and 
2/Dy2/D ≤≤−  in the plane of Figure 1 and with 

an infinite dimension along the z  axis (where 0R  is 
the radius of the circumference). 
 
Pressure equation 
   In thermoacoustics linear theory [3, 7] the acoustic 
disturbances are assumed to be small. The acoustic 
field variables correspond to the first order expansion 
(index 1 ) of the pressure p , the axial and transverse 
velocities xv  and yv , and the temperature T . An 
acoustic field variable 1ψ  is expressed through its 
complex amplitude ψ~  as )~( ti

1 e ωψψ −=Re , 
where )( "Re  denotes the real part, t  is the time 
and f2πω=  is the angular frequency. A boundary 
layer approximation of fluid mechanics is achieved 
under the condition ),min( νδλ D>>  where 

ωνδν /02=  ( 0ν  is the kinematic viscosity at the 
operating conditions 0p  and 0T ) [6]. The variables 

xv
~ , yv
~  and T~  can be presented as the functions of 

p~ only. The pressure p~  is given by a homogenous 
second order differential equation arising from the 
transverse velocity adherence condition on the walls 

0
2Dyy =

±= /
~v  (see Eq. (54) in Ref. [3]). In the case 

of the two wave sources resonator under 
consideration, y

~v  is zero on the walls over the entire 

resonator except at 0x =  ( 02Dyy vv ∓=
±= /

~ ) and 

ax −=  ( ϕi
02Dyy e−
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~ ). Consequently, the 

pressure equation becomes inhomogeneous: 
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where δ  is the Dirac delta function, 
21

k0 f1f1f1kk /))/())((( νν γ −−++=  is the 
acoustic wave number ( 0k  is the adiabatic acoustic 
wave number), γ  is the ratio of the specific heats, 

kf ,ν  are the values of the functions 

Di1Di1 kkk /))/(tanh()( ,,, ννν δηδΦ ++=  at 
1=η  ( Dy2 /=η  is the dimensionless transverse 

coordinate), σδδ ν /=k  is the thermal boundary 
layer depth (σ  is the Prandtl number), and 0ρ  is the 
density at 0p  and 0T . 
   The δ -localised volume sources can be equivalently 
described by the discontinuity of the pressure 
gradients at the transverse cross-sections 0x =  and 

ax −= . Pressure itself is continuous in these cross-

sections. By assuming a quasi-adiabatic regime 
( 1D <</νδ ) and the resonance condition ( λ≅L ), 
and fixing the parameters a  and ϕ  at 4/λ  and 

2/π , respectively, the solution of the pressure 
equation is obtained. It describes a single wave 
propagating in the positive direction of the x  axis 

xki
a

Repp =~ , with the amplitude 
)/()/( LkDda2p I000a vρ−= , where Rk  and 

Ik  are the real and imaginary parts of the wave 
number k  and 0a  is the adiabatic sound speed. 
   The thickness of the stack installed in the annular 
resonator is assumed to be much less than the 
waveguide length and the thickness of the plates is 
assumed to be much less then the waveguide width. 
Consequently, no reflection of the purely propagating 
wave is expected to occur on the edges of the stack. 
Finally possible modification of the initial 
homogeneous temperature distribution due to the 
thermoacoustic effect in the boundary layers is 
neglected. 
 
Numerical model for the acoustic streaming 
   A description of the acoustic streaming consists in 
combining the mass and momentum conservation 
laws. The resulting equation of motion is averaged 
over the acoustic wave period τ  
( ∫

+
>=<

τ
τ

t
t

dttf1f ')'()/( ). The system of 

equations obtained for the acoustic streaming velocity 
(i.e. average velocity) includes force sources induced 
by the acoustic field [1, 7]. These forces are quadratic 
in the amplitude of the acoustic field. Due to the 
boundary layer approximation D>>λ  and the 
toroidal symmetry of an annular resonator “without a 
stack”, this system under the assumption of linear 
streaming [1] reduces to a one-dimensional equation, 

x0c
2

xm
2

xm F)/(// ρτηθ +∂∂=∂∂ vv  ,      (1) 
where xmv  is the axial velocity of the acoustic 
streaming, ct τθ /=  is the dimensionless time, 

0
2

c D νπτ /)/(=  is the characteristic transient time 
of the acoustic streaming development and xF  is the 
sum of two bulk forces per unit volume 

ηρ η ∂><∂−= /)/( 1x101x D2F vv  and 

ηηνρ ∂>∂∂<∂= //)/)(/( x11
2

0002x TD2TbF v . 
The force 2xF  arises due to the dependence of the 
viscosity µ  on the temperature T  via the 

phenomenological parameter b  ( b
00 TT )/(µµ = ) 

[2]. 
   For a similar device (acoustitron), Eq. (1) is solved 
analytically on using Fourier series expansions [6]. A 
numerical model proposed for the same device 
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provides results in good agreement with the analytical 
ones [8]. In this latter model, the force components 
( 1xF  and 2xF ) and the initial, symmetry and 
boundary conditions ( 00xm == )( θv , 

01xm =±= )(ηv , and 00xm =∂=∂ ηη /)(v , 
respectively) are incorporated in a semi-opened code 
of fluid dynamics (Fluent 6.0 [9]). A bi-dimensional 
incompressible flow is considered. Consequently, the 
numerical code (using finite volumes method) solves 
the following momentum equation 

FUUUU
+−

∇
−=∇⋅+

∂
∂ ∆ν

ρ 0
0

p
t

)(  ,           (2) 

where U  is the flow velocity vector and F  is the 
force sources vector. With the boundary layer 
approximation ( yx ∂⋅⋅∂<<∂⋅⋅∂ // ), the periodicity 
condition ( )()( Lxp0xp === ), and weak 
velocities (negligible convective terms), the solution 
of Eq. (2) approximates the solution for Eq. (1). 
   In this paper, the previous numerical model is 
applied to the annular resonator and also extended in 
order to include the stack. The installation of a “short” 
stack introduces a discontinuity in the axial force 
distribution xF . It is important to mention here that 
the space separating the plates is assumed to be much 
less than the stack length (boundary layer 
approximation). Consequently, the acoustic streaming 
in the stack is one-dimensional (axial). In Eq. (2) the 
terms U∆  and p∇  link the axial streamings in the 
waveguide and the stack which allows the description 
of the bi-dimensional acoustic streaming occurring in 
the vicinity of the stack edges (terminations). 
 
Results 
   In Fig. 2, the axial force profiles xF  along the 
waveguide and stack cross sections are plotted for air 
( 41.=γ  710.=σ  and 770b .= ). These profiles are 
normalized to the maximum of the force amplitude in 
the waveguide. The installation of a stack in a given 
waveguide cross-section (here 2Lx /= , see Fig. 1) 
is made by adding plates progressively. Consequently, 
in the indicated cross-section, the ratio of the viscous 
boundary layer depth to the waveguide width 
increases up to 1D =/νδ  starting from the initial 

10D ./ =νδ  characteristic to quasi-adiabatic regime. 
   As expected, the stationary results show no variation 
of the axial and radial acoustic streaming velocities 
( xmxU v=  and ymyU v= ) along the resonator axis far 
from the stack and along the central parts of the latter. 
Furthermore, the radial velocity in these regions 
approaches zero ( 0ym ≅v ). Consequently, the results 
here below are presented for the waveguide cross-
section 0x = . 

-1 -0.5 0 0.5 1
-2

-1.5

-1

-0.5

0

0.5

η

F x

0 plate (δ
ν
/D=0.1)

1 plate (δ
ν
/D=0.2)

9 plates (δ
ν
/D=1)

 
Figure 2 : Force profiles in resonator cross-section 

where stack is installed. 
 

   In Fig. 3, the stationary velocity profiles xmv  are 
plotted for different number of installed plates and 
different volumes occupied by the stack. These 
profiles are normalized to the maximum of the 
velocity amplitude in the waveguide. When the first 
two plates are installed, the velocity amplitude 
increases (see curves 0-2 plates in Fig. 3a and Fig. 3b) 
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Figure 3 : Stationary velocity profiles in the 

waveguide cross-section 0x = . 
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due presumably to an increase of the force inducing 
directional streaming. However, subsequent increase 
in the number of plates leads to the decrease of the 
maximum streaming velocity (see curves 2-29 in Fig. 
3a and Fig. 3b). This latter behaviour of the velocity is 
assumed to be related to faster increase in the 
hydrodynamic resistance of the stack in comparison 
with the increase of the forces promoting directional 
streaming. It is clear that with increasing number of 
the plates the unidirectional streaming is gradually 
transformed in a bi-directional streaming, which 
carries zero mass flux across the resonator cross-
section. Figure 3 also highlights the effect of the stack 
volume. When the stack length increases, this on the 
one hand leads to increase of the total force promoting 
the motion of the fluid (because the volume of the 
acoustic boundary layers where this force is generated 
increases). Compare the respective curves 0-3 plates 
in Fig. 3a and Fig. 3b. On the other hand increasing 
length of the stack increases hydrodynamic resistance 
for the directional acoustic streaming. Compare the 
respective curves 4-29 in Fig. 3a and Fig. 3b. 
   Averaging the transient velocity profiles over the 
waveguide cross-section ( ∫−=

1
1 xmxm d21 ηvv )/( ) 

allows the investigation of the directional acoustic 
streaming stabilisation. The dimensionless 
characteristic time cθ  of streaming stabilisation is 
obtained by solving the equation 

)()()( ∞⋅−= −
xm

1
cxm e1 vv θ . Figure 4 demonstrates 

the decrease of cθ  with the increase of the number of 
plates or the increase of the stack volume. 
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Figure 4 : Dimensionless characteristic time as a 

function of the number of plates. 
 
Conclusion 
   The acoustic streaming development in annular 
resonator (equipped by a short stack) is studied 
numerically. The numerical results highlight a conflict 
between two phenomena accompanying the increase 
in the number of plates composing the stack and the 

increase in the stack length. In fact the increase in the 
volume of the boundary layers leads both to the 
increase of the force, promoting the fluid motion, and 
the hydrodynamic resistance to directional fluid flow 
across the stack. As a result the unidirectional 
streaming transforms with increasing number of stack 
plates and of their length. The characteristic time of 
the unidirectional component of streaming, carrying a 
non-zero mass flux over the resonator cross-section, 
diminishes with the installation of the stack. Its 
amplitude diminishes with increasing hydrodynamic 
resistance of the stack. 
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