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Abstract
In this paper a complete processing for intravascular elas-

tography is presented. The technique consists in three main
steps: a fully automatic blood wall interface segmentation,
a strain computation and a reconstruction of a mechanical
parameter. A first assessment of the developed method was
performed with simulated data and a fresh excised human
carotid artery. Resulting elastograms show a good agree-
ment with medium mechanical parameters, and demonstrate
the ability of the technique to produce images relative to the
elasticity.

Introduction
Intravascular elastography aims at mapping the elas-

ticity of the arterial wall during the cardiac cycle [1],
[2]. This technique might provide useful information
to select the most appropriate therapeutic procedure
and/or to predict the disease evolution. Strain esti-
mation methods used in intravascular elastography are
those that were developed in the extracorporal investi-
gations. But since the transducer is positioned in the
lumen and not in direct contact with the tissue, an in-
crease of pressure moves away the arterial wall from
the transducer, making necessary a registration of the
beginning of the wall signals acquired at different pres-
sure levels. This preprocessing, that has to be observer
independent, requires the use of a fully automatic seg-
mentation of the blood-wall interface.

The main objective of this study is to provide a com-
plete improved elastographic processing to investigate
vessel elastic properties. The method consists of 3 main
steps: the initial step is the blood-wall interface seg-
mentation to register signals acquired before and af-
ter deformation. Then displacement and strain distri-
butions are estimated independently. The final step is
the parametric reconstruction of elasticity. Validity of
the method was tested on simulated and experimental
data. Resulting elastograms show a good agreement
with medium mechanical parameters, and demonstrate
the ability of the method to produce images relative to
the elasticity.

Blood-wall interface segmentation
The approach adopted in this study is mainly a statis-

tical one. It exploits the statistical difference between

blood (denotedR1) and tissue (denotedR2) brightness
to deform an active contour. But the main interest of
the presented technique is that it requires neither pa-
rameter tuning, nor a manual pre-selection of a region
of interest tight around the searched boundary. This has
been achieved by an initial contour that is not set like
in classical snake-based algorithms but computed, and
thus adapted to each image.

Theoretical background
Ultrasound speckle is an inherent characteristic of ul-

trasound images. It has a random nature as formed by
scatterers whose locations and acoustical strengths are
randomly distributed. Echo envelop statistics depend
on the effective scatterer density. Several studies have
shown that ultrasound echo envelop can be well approx-
imated by Rayleigh distributions. With this model, the
probability that a pixeli, has a brightnessAi is given
by :

P (Ai) =
Ai

α2
exp(− A2

i

2α2
) (1)

with α the distribution parameter.
By considering the Rayleigh model, the segmenta-

tion problem becomes searching the lumen border as
a continuous smooth closed curve that separates opti-
mally two regions identified as two Rayleigh distribu-
tions, one modeling the blood brightness and charac-
terized by the parameterα1, the other corresponding
to the tissue and characterized by the parameterα2. A
well adapted statistical procedure to determine the con-
tour position, from an initiala priori contourC with
prior probabilityP(C), is the Bayesian estimation. The
Bayesian estimator that is often used in practice is the
maximuma posteriori(MAP) approach. Thea poste-
riori probabilityP (C|I) computes for a given contour
position its probability to occur. TheMAP approach
thus searched the contour that has the highest probabil-
ity to occur, as the argument that maximizesP (C|I)
(Eqn.2):

C̃ = arg max
C

[P (C|I)] = arg max
C

[
P (I|C)P (C)

P (I)
]

(2)
with P (C|I) the data model,P(C)the contour model,

andP(I) the a priori data probability, a normalization
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constant which only depends on the noise.P(I) is thus
a constant that can be removed from the maximization
problem. Finally for the sake of simplification, the log-
arithm of the expression is preferred, leading to:

C̃ = arg max
C

[ln[P (I|C)] + ln[P (C)]] (3)

Blood and tissue brightness are modeled by Rayleigh
distributions. The analytical expression of the data
model is thus given by:

P (I|C) =
∏
i∈R1

P (Ai|C)
∏

j∈R2

P (Aj |C)

P (I|C) =
∏
i∈R1

Ai

α2
1(C)

e
(− A2

i
2α2

1(C)
) ∏

j∈R2

Aj

α2
2(C)

e
(−

A2
j

2α2
2(C)

)

(4)
with α1 andα2 parameters that need to be estimated.

Their values can be easily derived with the maximum
likelihood estimation technique [3], leading to:

α1 =
√

1
2n1(C)

∑
i∈R1

A2
i α2 =

√
1

2n2(C)

∑
j∈R2

A2
j

(5)
with n1(C) andn2(C) the number of samples in re-

gionR1 andR2 respectively, givenC. By injecting (5)
and (4) in (3) and removing terms whose sum leads to a
constant, the final criteria becomes:

C̃ = arg max
C

[−n1(C) ln(α2
1(C))−n2(C) ln(α2

2(C))+ln(P (C))]

(6)
The MAP estimator performs well when two regions
with homogeneous brightness have to be separated.
However, this situation is hardly met with intravascu-
lar ultrasound images, simply because the texture of the
arterial wall may be highly heterogeneous, all the more
that the tissue is affected by atherosclerosis. This means
that in many cases, the tissue brightness can not more be
modeled by only one Rayleigh distributions but, is rep-
resented by several juxtaposed Rayleigh distributions.
The consequence of this observation is that theMAP
may be at a position that does not correspond to the lu-
minal border. However the shape of thea posteriori
probability gives complementary information since lo-
cal maxima reveal region transitions. Moreover the het-
erogeneity in intravascular ultrasound images mainly
occurs in the arterial wall, while the blood texture ap-
pears more homogeneous. Under these considerations,
the luminal border may also be searched as the first lo-
cal maximum (FLM) of P (C|I). But because blood
heterogeneity might also occur, we have decided to con-
sider both theMAP and theFLM for the initial contour
computation.

Initial contour construction

All the processing is performed on the envelope po-
lar image. The polar image is divided in the angular
direction θ in N regions of equal width. To each re-
gion is attributed a point of the contour. The contour
is thus defined as a polygon with N control points Mi,
whose angular positions are fixed at the middle of each
region denotedRgi. Only their axial positionri re-
main to be determined (fig.1). For the initial contour
computation step, all regions are first process indepen-
dently. For each regionP (C|I) is computed at each
axial position, by virtually moving from the top down-
wards a border supposed to be an horizontal line. From
P (C|I), both theMAP and FLM positions are deter-
mined. Then, the initial contour is constructed as fol-

Figure 1: Problem illustration

lows : on regions where theMAP and theFLM are at
the same axial position, they have a strong probability
to indicate the blood-wall interface. They are termed
reliable points and considered as points of the initial
contour. Then, for points for which theMAP andFLM
do not lead to the same axial position, the two found
positions are considered as possible. By considering all
the regions and the reliable points, positions retained
are those that lead to the smoothest contour.

Contour evolution

Once the initial contour is determined, a region of
interest of 30 pixels above and below the contour is se-
lected. A smoothness constraint is also introduced to
obtain a final smooth closed contour. It has to be noted
that the smoothness constraint has been determined em-
pirically, fixed to 0.5 and has never been changed, what-
ever the image to process. Thus the contour evolution
consists of the iterative scheme of defining the region of
interest and computing the new contour position. The
algorithm stops when the contour motion becomes so
small that it can be ignored.
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Results
To illustrate our technique performance, automatic

contours obtained for twoin-vivo images of coronary
arteries are presented in Figure 2. The first image (Fig.
2a) represents an easy situation since the catheter is po-
sitioned close to the lumen center and the blood-wall in-
terface is characterized by a significant pixel amplitude
variation. In such conditions, segmenting the luminal
area presents no real difficulty. However for more com-
plicated images, the technique still detects successfully
the searched contour. One illustration is given (Fig. 2b)
representing an artery with a stent restenose. On the in-
travascular image, the stent appears as bright spots that
can negatively influence the contour detection. How-
ever results demonstrate that the active contour is not
attracted by the stent and well converges towards the
luminal border.

(a) (b)

Figure 2: Examples of automatic contour.

Strain estimation
Consider a tissue undergoing a strainε, the signal

after deformations(t) can be written as:

s(t) = r(t + tε(t)) (7)

wherer(t) is the reference signal. In our model the
strainε can be considered as a scaling factor (ε(t) =
cte) or as a delay (tε(t) = cte).

To estimate strains we developed an algorithm based
on the maximisation of the cross-correlation ofr(t)
and s(t). The expression of the complex correlation,
Rr̃s̃(ε̂), according to the strain is :

Rr̃s̃(ε̂) =
∫ ∞

−∞
r̃(t)s̃∗(t − tε̂)dt (8)

where˜ indicates the analytic signal. Owing to the
Hilbert transform properties the cross-correlation can
be written as:

Rr̃s̃(ε̂) = 2 (Rrs(ε̂) − jRřs(ε̂)) (9)

wherě is the imaginary part of the analytic signal, and
the Hilbert transform of the RF signaux. When the es-
timated strain,̂ε, is equal to the applied strain,ε then,

according to the equation (7), the cross-correlation be-
comes auto-correlation ofr(t), which also corresponds
to the signal energy, a real and positive value. This
means that the imaginary part is zero. The algorithm is
actually based on the search of the root of the imaginary
part of the cross-correlation using a Newton algorithm.

In the following the strain will be estimated both as
a scaling factor and as a time delay. This have been
performed in order to have independent measurements
(see next section).

It has to be noted that the local estimation is per-
formed by dividing the RF signals in segments and by
estimating the strain for each segment. For more accu-
rate and faster estimation, an adaptive displacement of
the window of study is introduced. While moving uni-
formly on the reference signal, the window on the signal
after deformation moves of a length which depends on
the strains previously estimated.

ti = i.∆T

t′i = ti + ∆T

i−1∑
l=1

ε̂l
(10)

whereti is the beginning of theith calculation window
for the reference signal,t′i is the beginning of theith

calculation window for the deformed signal andT is
the window length.

An additive processing is necessary when the scal-
ing factor is calculated. A very accurate registration,
smaller that the sample period, is then necessary to have
an unbiased estimation of the strain. This additive reg-
istration is performed by calculating the delay between
the two signals for the first calculation window and by
compensating for.

Parametric reconstruction
Theoretical deformation of a thin cylinder

In the case of a thin cylinder its length is supposed
to be large compared to the section size, and the plane
strain simplification can be applied. In the case of the
symmetry around the cylinder axis, the radial displace-
ment only depends on the radius and can be expressed
as :

ur(r) = −A

r
+ Br (11)

whereA andB depend on the medium mechanical
and geometrical properties. This relation is true for any
cylinder with the described symmetry, independently of
the number of layers. Radial and tangential strains are
linked to the radial displacement by: (Eq.12)

εrr(r) = ∂ur
∂r = A

r2 + B

εθθ(r) = ur
r = − A

r2 + B
(12)
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It appears clearly that radial and tangential strains
differ only by the sign of a coefficient. Then a sim-
ple summation of these two strains leads to a constant,
2B. This sum represents the compression rate of an el-
ementary surface and depends on the mechanical prop-
erties of the tissue. Furthermore, tangential strain can
easily be deduced from displacement (Eq.12). It is also
important to note that for a pure incompressible media
this constant vanishes.

Thus in practical terms radial and tangential strains
have been estimated as follows: the radial strain was
computed with a scaling factor estimation [5], and the
tangential strain was deduced from the radial displace-
ment (Eq.12), the latter being estimated by using a time
delay technique[4].

Results
The method was first assessed with simulated data

corresponding to a thin cylinder exhibiting an eccentric
plaque (fig.3-d). Simulated data are obtained by com-
bining a finite element model with an acoustical field
simulation software. Despite the loss of symmetry of
this model, the reconstruction is applied. Both radial
and tangential strain fields were estimated (Fig.3). On
the radial elastogram the plaque can be located, but its
shape is not obvious, whereas on the reconstructed im-
age, even if each area does not appear homogeneous,
the plaque is clearly visible. Higher strains are also vis-
ible at the plaque extremities and highlight areas where
symmetry is low.

(a) (b)

(c) (d)

Figure 3: Elastograms for simulated phantom with an
hard eccentric plaque. a) radial strain b) tangential
strain c) strains summation d) elasticity distribution

The reconstruction was also tested on a fresh excised
human carotid artery (fig.4). The radial elastogram per-
mits to detect an area of low strain, revealing a hard
plaque, but whose shape is not accurate. On the recon-

structed image the plaque area appears more clearly and
matches with the histological section. These first im-
ages on anin vitro artery show encouraging results.

(a) (b)

(c) (d)

Figure 4: Elastograms for anin vitro carotid artery
with a thin plaque. a) radial strain b) tangential strain

c) strains summation d) histological section

Conclusion
In this paper a complete processing for the inves-

tigation of elasticity in intravascular elastography has
been introduced. Results on simulations and anin vitro
carotid artery have demonstrated the potentiality of our
technique.
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