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Abstract

A full Navier-Stokes 2D numerical simulation is
made to solve the flow and energy fields in a resonator
slice including a 1D stack plate. A stationnary wave
is settled in the domain using characteristics method.
The temperature difference between the plate ends is
compared to linear theory. Some slight differences are
found even at low acoustic Mach numbers, which are
explained. Some differences at higher Mach number
occur due to nonlinearities, and especially temperature
nonlinearities.

Introduction

The simulation of a single plate in a thermoacoustic
refrigerator is interesting because results may be com-
pared to linear theory. Among quantities of interest
is the temperature difference between the ends of the
plate. Several studies investigated this temperature dif-
ference experimentally or numerically. In some studies
agreement were found with linear theory at low Mach
numbers [1], [2], and a disagreement appeared at higher
Mach numbers due to nonlinear effects. Acoustic Mach
numberMa = uA= is defined as the ratio of maxi-
mum velocity amplitudeuA in the resonator divided by
the speed of sound. It is related to the drive ratioDr
by Ma = Dr=. Disagreement with linear theory oc-
curs when the Mach number exceeds 1%, a low value.
This value were found by Worlikaret al. in their simu-
lation [2]. This simulation is performed in the vicinity
of the plate, so nonlinear effects responsible for the ob-
served disagreement are unlikely to be due to nonlinear
wave propagation in the resonator. Another interesting
feature is that the agreement between experiments and
theory is better near velocity node than near velocity
antinode at high Mach numbers [1]. Nevertheless some
experiments could not match linear theory predictions,
even at low Mach numbers [3], [4].
In the following, a numerical simulation is performed,
and temperature difference between the ends of the
plate is compared to linear theory. In the choosen con-
figuration, a slight disagreement is found at low Mach
numbers, which can be explained. At higher Mach
numbers, a bigger disagreement is found, which is due
to nonlinear effects. The method which is used to cre-
ate the standing wave in the domain allows us to get
a strong yet linear wave. Hence the nonlinearities do

not arise due to nonlinear propagation. Instead they are
temperature nonlinearities due to the stack, which were
previously observed [5]. In particular it was shown
that at high Mach numbers, the temperature oscillation
is nonlinear above the plate, whereas the velocity os-
cillation remains linear. The nonlinear behaviour was
found to be stronger near velocity antinodes and for
short plates, thus showing that velocity is somehow in-
volved in the process [6].

Methods
The thermoacoustic refrigerator is shown in Fig. 1.

The operating frequencyf = !=2� is very high in or-
der to reduce computational time [5]. Hence we takef=20 kHz, corresponding to a wavelength� =17 mm.
The computational domain is referred to as CD. It is
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Figure 1: Thermoacoustic refrigerator and

computaional domain CD.

located betweenx = xinout and the resonator end atx = lres = �=2. The height of the domain is half the
plate spacing, due to stack periodicity. The domain also
include a 1D stack plate. An incident propagating wave
is injected into the domain through section located atx = xinout using characteristics method [5]. It travels
through the domain and is reflected at the resonator end.
The reflected wave travels in the direction of the source
and leaves the domain atx = xinout. The sum of the
incident and reflected waves is the standing wave that
we need. The total distance the wave travels in the do-
main being less than a wavelength, there is no time for
nonlinear distorsion. Hence the standing wave is linear,
even at high Mach numbers. The following equations
are solved for the flow:p = �rT (1)
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���t +r � (�u) = 0 (2)�(�u)�t +r � (�uu) +rp = r � � (3)�T�t + u � rT + ( � 1)Tr � u= ( � 1)�r (� +r � (KrT )) (4)T , �, andp are respectively the temperature, the den-
sity, and the pressure of the fluid.u is the velocity vec-
tor, � the stress tensor, and� the viscous dissipation.
We noteK the thermal conductivity of the fluid,r=287
JK�1kg�1 the gas constant,=1.4 the ratio of specific
heats. The 1D equation for the plate temperatureTs is:�ss�Ts�t = r � (KsrTs) + Kl ��T�y �plate (5)�s, s andKs are respectively the density, the specific
heat and the thermal conductivity of the plate.l is half
the thickness that an equivalent 2D plate would have.
The second term on the right hand side of Eq. (5)
represents the coupling with the flow. For this coupling
we also use the boundary conditionT = Ts on the
plate surface.

Temperature difference: linear theory
The temperature difference�T between the ends of

the plate is obtained assuming a zero mean total energy
flux along the plate. It is given by:�T = �Ly04�m P 2A sin(2kx)A1��y0K + lKs � y0p4!�m2(1 � Pr)P 2A�(1� os(2kx))A2��1

(6)A1 etA2 are given by:A1 = Im

��1� f�� � f� � f��(1 + �s)(1 + Pr)� 11� f�� �
(7)A2 = Im

��f�� + (f� � f�� )(1 + �sf�=f�)(1 + �s)(1 + Pr) �1(1� f�)(1� f�� )� (8)

We noteL the plate length,y0 half the plate spacing,k = 2�=� the wave number,Pr the Prandt number,p
the isobaric specific heat.PA = �muA is the maximal
pression oscillation amplitude in the resonator. Sub-
scriptm indicates mean (time-averaged) quantities.f�,

f�, and�s are functions which depend on viscous and
thermal penetration depths [7].� denotes the complex
conjugate. For expression (6) to be valid, the lengthL of the plate must be small in comparaison with the
wave length�. Usual assumptions of linear theory are
also made [7]. In particular, it is supposed that there is a
common mean temperature gradientdTm=dx = �T=L
in the plate and in the fluid, and that this gradient is
constant along the plate.

Results
Some simulations are now performed. The fluid is air

in normal conditions. For the plate, we takeKs=0.237,�s=900 kgm3 and s=2700 JK�1kg�1. L=�=0.0088,y0=Æ�=1.9 andl=Æ�=0.41, whereÆ� = p2K=�mp!
is the thermal boundary layer. In the following, two
parameters are important: the positionxs of the plate
center, which will appear through the non-dimensional
numberkxs, and the acoustic Mach numberMa.
In Fig. 2 we plot the temperature difference�T as a
function of the Mach number, for low Mach numbers.
It is compared to linear theory. We observe that even
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Figure 2: Temperature difference for low Mach
numbers as a function ofMa: + calculated, linear

theory (expression 6) modified linear theory
(expression 9).kxs=2.35.

for a low valueMa=0.5% (Dr=0.7%) the deviation is
about 20%. Two factors can explain this deviation. The
first was put forward by Kimet al.[4]: the temperature
gradient is globally constant along the plate, but not at
the extremities of plate. In all configurations tested, this
can be responsible for an error of 10%, but not for the
errors of 300 % mentionned per Kimet al.[4] and Duf-
fourd [3]. Moreover, this factor decreases as the plate
length incresases. The second factor is the difference
that exists between the mean temperature gradient in
the fluid, and the one in the plate. In the linear theory
these gradients are assumed to be equal. The mean tem-
peratureTm in the fluid (minus the ambiant temperatureT0) in the sectionx=cst at the hot extremity of the plate
is plotted versus the positiony=y0 in that section. Aty=0, the mean temperature is also the temperature of
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Figure 3: Mean temperature in the section of the

channel at the hot extremity of the plate.

the plate. We see that the temperature is not uniform in
the section, contrary to linear theory assumptions.
To take account of the two previous factors, the expres-
sion (6) is slightly modified as follows:�T = �1�Ly04�m P 2A sin(2kx)A1���2y0K + lKs � y0p4!�m2(1� Pr)P 2A�(1� os(2kx))A2��1

(9)�1 accounts for the non-constant temperature gradient
at the extremities of the plate, and�2 accounts for the
difference in mean temperatures in the plate and in the
fluid. Two remarks must be done. First�1 and�2 are
not constants that we choose in order to fit the simula-
tion, they are rigorously computed once the simulation
is performed. In particular�2 is calculated using the
spatial average of the mean temperature of the fluid in
the hot section of the channel. Second they can be used
only as ana posteriori correction. If an analytical,a
priori expression is wanted for both coefficients, an ex-
tension of the linear theory valid at the plate ends and
giving an expression for the mean temperature in the
fluid and in the plate is required (as in Ref. [8]). Data
obtained with expression (9) are plotted in Fig. 2. We
see that this modified expression fits our numerical re-
sults at low Mach numbers.
Now we plot the temperature difference as a function
of the Mach number for the whole Mach number range.
This is done in Fig. 4 forkxs = 2:35 and in Fig. 5 forkxs = 2:9. For kxs = 2:35, at low Mach numbers,
the simulation agrees well with the modified linear the-
ory given by expression (9). A disagreement is found
aboveMa=1.5%. It is due to nonlinear effects. More
precisely, it is mostly due to the nonlinear oscillation
of temperature above the plate. AboveMa =1.5%, the
temperature deformation indeed increases as the Mach
number. As indicated in the introduction, the nonlin-
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Figure 4: Temperature difference as a function ofMa: + calculated, linear theory (expression 6)

modified linear theory (expression 9).kxs=2.35.
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Figure 5: Temperature difference as a function ofMa: + calculated, linear theory (expression 6)

modified linear theory (expression 9).kxs=2.9.

earities of temperature decrease as the plate is pushed
toward the velocity antinode. A consequence of that is
shown in Fig. 5: for a positionkxs=2.9 closer to the ve-
locity antinode than the previous one, the Mach number
at which the temperature difference deviates from linear
theory prediction is more than 4%. This value is larger
than the value 1.5% found forkxs=2.35.
We now turn to the effect of the parameterkxs repre-
senting the stack plate position. In Fig. 6 and Fig. 7 we
plot the temperature difference�T as a function ofkxs
for two values of the Mach number:Ma=0.005, andMa=0.04. ForMa=0.005, we observe that the temper-
ature difference is well predicted by the modified linear
theory for all plate positions. In particular, the maxi-
mum temperature difference is reached forkxs=2.35,
that is, between the pressure and the velocity antinodes.
For a higher valueMa=0.04 of the Mach number, simu-
lations and modified linear theory do not agree for most
values ofkxs, as expected at high Mach numbers for
which we have nonlinearities. The difference between
the calculated curve and the modified linear theory de-
creases askxs increases, which was also found experi-
mentally by Atchleyet al.[1]. For a value ofkxs high
enough, numerical results and modified linear theory
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Figure 6: Temperature difference as a function ofkxs: + calculated, linear theory (expression 6)

modified linear theory (expression 9).Ma=0.005.
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Figure 7: Temperature difference as a function ofkxs: + calculated, linear theory (expression 6)
modified linear theory (expression 9).Ma=0.04.

predictions even match. This is the case because non-
linearities in temperature oscillation decrease near the
velocity antinode [6]. From Fig. 7 a second observation
is made. The optimal value ofkxs for which the tem-
perature difference is maximum is slightly larger than
the one predicted by the modified linear theory.

Conclusion

Temperature difference between the extremities of a
stack plate were calculated numerically. It was found
that even at low Mach numbers, the calculated differ-
ence does not always agree with linear theory. Devia-
tions up to 25 % have been observed. Two reasons for
these deviations have been found: 1) at the extremities
of the plate, the mean temperature is not a linear func-
tion of the axial position, 2) the mean temperature in
the plate and in the fluid are not equal at the plate ends,
contrary to the linear theory assumptions. Taking ac-
count of these observations, a slighty modified expres-
sion for the temperature difference was given, which
agrees with the numerical results at low Mach numbers.
The corrections given here are less than 25%, and fail
to explain the large deviations (ranging from 200% to

300%) found in some experiments [3][4]. But some pa-
rameters may increase the corrrection factor: for exam-
ple, if the plate thermal conductivity is increased, the
second effect will be stronger and the correction factor
will be higher.
At high Mach numbers, modified theory and numerical
results do not agree, due to nonlinear effects. In partic-
ular the deviation is stronger near the velocity antinode.
This has been related to the nonlinearity of temperature
oscillation, which is itself stronger near velocity antin-
odes.
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