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Abstract

The large amplitude standing wave excited in a res-
onator induces acoustic streaming of Rayleigh type out-
side the acoustic boundary layer on the wall of the
resonator. The streaming motion with large Reynolds
number is examined numerically in relatively long two-
dimensional rectangular boxes. The two-dimensional
incompressible Navier–Stokes equations with no exter-
nal force are used as the governing equations for the
streaming velocity. The steady velocity component at
the outer edge of the acoustic boundary layer, which
induces Rayleigh type streaming, is employed as the
boundary condition for the Navier–Stokes equations.
By using a finite-difference method, the existence of
multiple steady state solutions are shown.

Introduction

Streaming motions induced by acoustic standing
waves are classical topics in physics [1,2]. Today, an
active control of streaming in resonators becomes an
important problem in various applications (e.g., [3]).
Some authors have recently carried out accurate mea-
surements for slow streaming motions [4,5]. However,
the behavior in the case of large Reynolds number re-
mains unresolved.

Recently, the present author has numerically studied
the resonant gas oscillation with a periodic shock wave
in a closed tube by solving the system of compressible
Navier–Stokes equations [6]. The result has suggested
the occurrence of turbulent acoustic streaming when a
streaming Reynolds number is sufficiently large. How-
ever, the direct numerical simulation of viscous com-
pressible flow is an extraordinarily hard task if one tries
to resolve all phenomena from an initial state of uni-
form and at rest to an almost steady oscillation state
throughout the entire flow field including the boundary
layer.

In a previous paper [7], we have adopted a simple
model based on the linear standing wave solution and a
boundary layer analysis. This model employs the in-
compressible Navier–Stokes equations as the govern-
ing equations for the streaming velocity. As a result,
we have numerically shown the multiple existence of
steady state solutions in a two-dimensional rectangu-
lar box of length L ∼= λ, where λ is the wavelength
of the standing wave. In the present paper, we shall

extend the previous analysis [7] to the cases of higher
mode (mainly 5th mode) standing waves in relatively
long boxes. Some of our numerical results somewhat
resemble experimental ones [8].
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Figure 1: Schematic of model.

Problem
We shall consider the streaming motion induced by

resonant gas oscillations in a two-dimensional rectan-
gular box filled with an ideal gas (see Fig. 1). The box,
whose length is L and width is W , is closed at one end
by a solid plate and the other by a piston (sound source)
oscillating harmonically with an amplitude a and angu-
lar frequency ω.

We assume that the sound excitation is moderately
weak and the dissipation effect is sufficiently small out-
side the boundary layer; this is assured by

M = aω
c0

� 1, ε =
√

ν0ω
c0

� w,

w = Wω
c0

= O(1),
(1)

where M is the acoustic Mach number, ε is a measure of
the ratio of the viscous penetration depth to the wave-
length, and w is a normalized width of the box. The
wave motion in the bulk of the gas can then be regarded
as a plane standing wave with small corrections due to
nonlinear and dissipation effects.

u = M
sin(x − b)

sin b
sin t + · · · ,

ρ = 1 + M
cos(x − b)

sin b
cos t + · · · ,

(2)

where u is the axial component of the fluid veloc-
ity normalized by c0, ρ is the normalized gas density,
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x = x∗ω/c0, and t = ωt∗. We also assume that the gas
oscillation concerned is near the nth mode resonance,

b = Lω
c0

= nπ +
√

M∆, (3)

where n is a positive integer and ∆ is a nondimen-
sional parameter for a measure of detuning (∆ �= 0).
If |∆| = O(

√
M), then the oscillation includes two pe-

riodical shock waves as long as the dissipation effect is
sufficiently small. The formation of shock waves may
induce the turbulent streaming motion as shown in [6].
In what follows we assume ∆ ≈ 1. Equation (2) can
then be rewritten into

u =
√

M 1
∆ sin x sin t + · · · ,

ρ = 1 +
√

M 1
∆ cos x cos t + · · · .

(4)

Boundary layer analysis
Equation (4) suggests that the physical quantities

such as u and ρ may be expanded in powers of
√

M
and the method of matched asymptotic expansions can
be applied for the analysis inside the acoustic boundary
layer. Using the method of matched asymptotic expan-
sions, we have, in the first order,

u1 = −
√

M
1
∆sin x

[
cos t

− exp
(
− η

√
Pr
2

)
cos

(
t − η

√
Pr
2

)]
, (5)

ρ1 =
√

M
1
∆cos x

[
sin t

+(γ − 1) exp
(
− η

√
Pr
2

)
sin

(
t − η

√
Pr
2

)]
, (6)

where the subscript 1 denotes the first order term and
η = y/ε is the coordinate normal to the boundary (we
here concentrate on the lower wall y = 0). In the sec-
ond order, we have to solve

∂2u2

∂η2
= −v3

α

∂u1

∂η
− u1

∂u1

∂x
− ρ1

∂u1

∂t
− ∂p2

∂x
, (7)

where the subscript 2 denotes the second order term and
the bar denotes the time average, e.g.,

u2 =
1
2π

∫ 2π

0
u2(x, η, t) dt. (8)

Solving Eq. (7) and taking the limit η → ∞, we obtain

lim
η→∞u2 = −M

∆2
sin 2x

[3
8

+
√

Pr(γ − 1)
4(Pr + 1)

]
, (9)

and ρ1u1 → 0. That is, we have the time-averaged mass
flux u2 at the outer edge of the boundary layer.

Governing equation for streaming
Then, the governing equations for the steady stream-

ing velocity (U, V ) outside the boundary layer are [7]

∂U
∂x

+ ∂V
∂y

= 0, (10)

U ∂U
∂x

+V ∂U
∂y

+ ∂p
∂x

= 1
Re

(
∂2U
∂x2 + ∂2U

∂y2

)
, (11)

U ∂V
∂x

+V ∂V
∂y

+ ∂p
∂y

= 1
Re

(
∂2V
∂x2 + ∂2V

∂y2

)
, (12)

where all variables are nondimensionalized and a
streaming Reynolds number Re is defined as

Re =
U0

ε2
, U0 = M

∆2

[
3
8 +

√
Pr(γ − 1)
4(Pr +1)

]
, (13)

The boundary condition on the upper and lower walls is
given as

U = − sin 2x, V = 0, (14)

and the non-slip condition is applied at x = 0 and
x = nπ. We here notice some important features of
Eqs. (10)–(14): (i) the streaming velocity (U, V ) is the
divergence free and rotational (vortical) vector field; (ii)
the momentum equations (11) and (12) have no driving
force term, because the wave field may be described by
the plane standing wave (4); (iii) since the boundary
layer is sufficiently thin, we can neglect its thickness
and impose the boundary condition (14) at y = 0 and
y = w; (iv) the length of the box b can also be approxi-
mated as nπ.

Previous results
In Ref. 7, we have analyzed the steady streaming mo-

tions in the case of n = 2 (second mode), and thereby
we have demonstrated that (i) the classical flow pat-
tern, which has a rotational and reflectional symme-
try, ceases to be a stable solution beyond Re = 240,
(ii) new flow pattern, which has reflectional symmetry
about x∗ = L/2, exists in a wide rage 140 < Re, (iii)
an asymmetric flow pattern appears at Re = 180, (iv)
180-degrees rotational symmetric pattern also appears
at Re = 700.

The multiple existence of steady streaming has thus
been demonstrated in the case of n = 2 in Ref. 7. In the
following, we shall present the numerical results mainly
for the case of n = 5 (fifth mode) in a relatively long
boxes.

Results
The steady state solutions for the boundary value

problem (10)–(14) are numerically obtained with a
finite-difference method, by solving initial value prob-
lems starting from some appropriate initial conditions.
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Figure 2: Streamlines for Re = 140. (a) classical Rayleigh streaming. (b) symmetric flow.

(a)

(b)

Figure 3: Streamlines for Re = 300. (a) classical Rayleigh streaming. (b) asymmetric flow.

(a)

(b)

Figure 4: Streamlines for Re = 600. Different type symmetric flows.

(a)

(b)

Figure 5: Streamlines for Re = 700. Different type asymmetric flows.

The computations are continued up to the time when the
numerical solution converges at a steady state. Since
we solve the initial value problem, unstable steady so-
lutions cannot be found. In other words, the numerical
solutions obtained by this procedure may be regarded
as the stable steady solutions.

Figures 2(a) and 3(a) shows the classical symmet-

ric streaming pattern. The classical symmetric pattern
seems to survive as a stable steady solution at least up
until Re = 300 in the case of n = 5 (see Fig. 6). The
flow pattern shown in Fig. 2(b) has the 180-degrees ro-
tational symmetry, but the symmetry around the central
axis (y = w/2) is lost. The rotational symmetry in
Fig. 2(b) disappers in the flow shown in Fig. 3(b) at
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Re = 300. The asymmetric flow in Fig. 3(b) belongs to
the same type as that in Fig. 4(b) at Re = 600, although
this pattern is also modified as shown in Fig. 5(b) at
Re = 700.
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Figure 6: Multiple existence of steady streaming
induced by the fifth mode standing wave (n = 5).

The symmetric flows as shown in Figs 2(b) first ap-
pears at Re = 140 and remains to be stable at least
up to Re = 1000 (see Fig. 6). The asymmetric flows
as shown in Figs. 3(b), 4(a), and 4(b) emerge at about
Re = 300, while the asymmetric flows as shown in
Fig. 5(b) are not obtained for Re < 700 in the present
numerical procedure.

We shall remark that the flow patterns shown in
Figs. 4(a) and 5(a) somewhat resemble an experimen-
tally obtained flow pattern [8]. We also remark that all
the flow patterns in n = 5 can be regarded as combina-
tions of those in n = 2 obtained in Ref. 7.

Conclusions
We shall summarize the main results:
1. Multiple existence of steady streaming is numeri-

cally confirmed in the fifth mode standing wave field in
a 2-dimensional relatively long rectangular box.

2. Some flow patterns resemble those observed in
experiments.

3. All flow patterns obtained in the case of n = 5
can be regarded as combinations of those in the case of
n = 2 obtained in the previous numerical analysis.
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