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Abstract 
   The propagation of high amplitude ultrasonic fields, 
such as those generated by some medical ultrasound 
systems, is not adequately described by the linear 
wave equation.  Instead it is necessary to consider 
non-linear propagation if the drive levels are high 
enough to make non-linear effects significant.  As a 
result of non-linear propagation the transmitted 
waveforms distort as they propagate, resulting in the 
generation of harmonics of the initial frequency 
components transmitted by the transducer.  In the 
nearfield of medical transducers diffraction and 
focusing effects associated with the source complicate 
this process. 
   The basic physics of this non-linear propagation is 
reviewed and the complex characteristics of the finite 
amplitude fields generated by different sources are 
described.  This is illustrated with both experimental 
results and numerical predictions obtained using a 
finite difference solution (the Bergen Code) to the 
Khokhlov-Zabolotskaya-Kuznetsov (or KZK) 
equation.  The fields of both ideal sources and real 
medical systems are demonstrated.  The use of 
harmonics to improve image quality is then considered, 
with the characteristics of the fields produced by 
harmonic imaging and pulse inversion systems being 
compared.   The implications of non-linear propagation 
for medical ultrasound output regulation are also 
considered.   
 
Introduction 
   The propagation of ultrasonic waves is often 
assumed to be a linear process.  In this case the 
waves travel at a constant velocity ( c0 ) and so 
maintain their shape as they propagate.  However, it is 
relatively easy to generate high enough pressures in 
ultrasonic fields for the effects of non-linear 
propagation to become significant, with the 
compressional phases of the wave travelling faster 
than the rarefactions.  The resulting wave distortion 
(see Figure 1) can lead to shock-like waveforms with 
sudden changes in pressure.  This distortion of the 
wave in the time domain indicates that the waveform 
now contains additional frequencies; for a single sine 
wave the propagation results in the generation of 
harmonics of the initial frequency.  

  The significance of non-linear propagation in medical 
ultrasonics was noted by Muir and Carstensen [1] and 
some of the first measurements of non-linear 
propagation through tissue were performed by Starritt 
et al. [2].  Since then a considerable growth in our 
understanding of non-linear propagation in the field of 
medical ultrasound has occurred.  This has been made 
possible by a number of factors.  Firstly the availability 
of very wide band hydrophones and high speed digital 
oscilloscopes has facilitated the accurate acquisition of 
the distorted waveforms resulting from non-linear 
propagation.  Secondly, the increase in computing 
power has made it feasible to model the non-linear 
propagation effects in detail. 
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Figure 1.  Non-linear propagation of a plane wave.  
Initial sinusoidal waveform (blue line) and distorted 

waveform (black thick line) at the point where a shock 
front has just formed. 

 
   A key element that has differentiated this study of 
non-linear propagation in medical ultrasound is that the 
non-linear effects occur in the nearfield of transducer 
beams, where diffraction effects are very important.  
Although many of these studies have been performed 
in the context of medical ultrasound systems, the 
results and modelling techniques may be applied in 
other areas of ultrasound.  Non-linear propagation 
effects probably occur in other ultrasonic applications, 
such as non-destructive testing using immersion 
transducers and the remote sensing of sediment 
particles in suspension. 
   This better understanding of non-linear propagation 
is also finding application in recent developments in 
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ultrasonic imaging, known as tissue harmonic imaging 
and pulse inversion imaging, which utilise non-linear 
propagation to improve image quality. 
 
Numerical Modelling 
   In order to model the non-linear propagation of a 
wave in the nearfield of an ultrasonic transducer it is 
necessary to allow for non-linear propagation, 
diffraction, and attenuation (including dispersion).  A 
number of different numerical approaches to this 
problem have been developed depending on the nature 
of the waveform to be propagated and the geometry 
of the system. 
   One approach is to solve the Khokhlov-
Zabolotskaya-Kuznetsov (KZK) equation, which is a 
non-linear parabolic equation that consistently 
accounts for non-linearity and diffraction in sound 
beams.  The parabolic or paraxial approximation 
assumes that the energy propagates in a fairly narrow 
beam.  This approximation is valid for acoustic sources 
that are many wavelengths across and for field points 
that are not too far from the beam axis or too near the 
source plane.  For circular sources this requires 
ka >> 1   (where k  is the wavenumber and a is the 
source radius). 
   If the z axis is in the direction of the beam 
propagation, and the transducer lies in the (x,y) plane 
normal to the z axis, then the KZK equation can be 
written: 
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Here p is the sound pressure, c0  is the small signal 
sound speed, δ is the sound diffusivity, β is the non-
linearity coefficient, ρ0  is the ambient density 
and τ = −t z c0  is retarded time.  The Lapacian 

operator in the (x,y) plane, ∇ ⊥
2 , can be simplified for 

axisymmetric sound beams.   
   The KZK equation is normally solved in the 
frequency domain for periodic signals by using a finite 
difference scheme to propagate the wave forward in 
small steps.  Essentially the pressure wave is written 
as a Fourier series consisting of the fundamental and 
its harmonics.  The series must be truncated at the Nth 
harmonic for numerical reasons.  This enables a set of 
coupled equations to be derived that enable each 
harmonic at each grid point in the (x, y) plane at 
( z z+ ∆ ) to be in written in terms of the harmonic 
amplitudes on the previous (x, y) plane at z.  This 
system of equations can then be solved by a variety of 
finite difference schemes.  The first scheme for the 
circularly symmetric case was implemented by 
Aanonsen et al. [3], and this code and its successors 

are referred to as the Bergen code.  The 
computational procedure can become very time 
intensive since for a distorted wave involving N 
harmonics the calculation of each harmonic at each 
grid point will involve some N2 multiplications.  In 
addition truncating the number of harmonics retained 
in the calculations below that required will eventually 
lead to errors in even the lowest order harmonics. 
    The propagation of short pulses, rather than periodic 
waves, can be implemented using this frequency 
domain approach.  In this case the fundamental 
frequency is taken to have a period equal to the time 
interval between pulses; this interval can be set to be a 
few times the pulse length rather than the true period.  
Even so, this can drastically increase the run time.  An 
alternative is to use an approach that performs the 
non-linear propagation step in the time domain.  The 
effect of the parabolic approximation in the KZK 
equation can be removed by using a 2D spatial fourier 
transform to obtain the plane wave spectrum of each 
harmonic; the plane wave spectrum can then be 
propagated forward without approximation [4]. 
 
Non-linear Propagation in Transducer 
Wavefields  
  The aim of this section is to illustrate the non-linear 
propagation of ultrasound in the nearfield of 
transducers, with examples for circular, focused and 
rectangular transducers.  Experimental results are 
compared with numerical predictions obtained using 
finite difference solutions to the KZK equation.  

 
Figure 2.  Axial variation of fundamental, second and 
third harmonics for a plane circular transducer 19 mm 

in radius.  Fundamental frequency 2.25 MHz and 
source pressure 100 kPa.  Experiment (solid  

lines) and theory (dashed lines). 
 
  Figure 2 shows the development of non-linear 
distortion along the axis of a plane circular transducer 
[5, 6].  Measurements of the fundamental and first 
two harmonics are compared with the numerical 
predictions of the finite difference model.  Close to the 
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source only the fundamental is present with no 
harmonic components.  As the range increases the 
harmonics build up with maxima and minima reflecting 
those in the fundamental.  The results show very good 
agreement and indicate how the distortion builds up in 
the vicinity of the last axial maximum at a range of 
a 2 λ .  In the region prior to this the rapid changes in 
the fundamental phase prevent the build up of 
significant distortion.  The finite difference solution 
does not show the rapid nearfield oscillations at short 
ranges as a consequence of the step size used.  It is 
also possible to model the propagation of pulses using 
Fourier synthesis and the frequency domain code.  
Figure 3 illustrates the level of agreement that can be 
obtained in the time domain for an initially sinusoidal 
short pulse [7]. 

 
Figure 3.  Pressure waveform on axis at 600 mm from 

a plane circular piston source 19 mm in radius. 
Experiment (solid lines) and theory (dashed lines). 

 

 
Figure 4. Axial variation of fundamental, second and 

third harmonics for a focused circular transducer with 
a gain of 8.5 in water.  Fundamental frequency 2.25 

MHz and source pressure 135 kPa. 
 
  Departures from a plane piston vibration can be 
accounted for by weighting the initial source amplitude 

distribution.  Likewise focusing can be included by 
introducing phase shifts to the fundamental component 
across the face of the transducer in the model [8,9].  
Figure 4 gives example results for a system with an 
amplitude gain of 8.5.  The axial variations of the 
fundamental and first three harmonics in water are 
shown.  Note that the non-linear distortion rapidly 
builds up in the region between the last axial minimum 
and the focus; in this case the waveform becomes 
shocked over a distance of about 50 mm.   Studies 
have also investigated the propagation through 
attenuating fluids with characteristics more typical of 
those of body tissues and fluids.  (The model can be 
adapted to include an arbitrary dependence of 
attenuation on frequency.)   
 

 
Figure 5. Axial variation of fundamental and first three  

harmonics for a focused field in a soft tissue mimic.  
Fundamental frequency 2.25 MHz and  

source pressure 310 kPa.  Experiment (points)  
and theory (lines). 

 
  Figure 5 shows an example result for the propagation 
of a focused field through a soft tissue mimic which 
was measured to have an attenuation of 0.3 dB cm-1 
at 1 MHz and a frequency power law dependence of 
1.07.  Again it should be noted that the distortion 
rapidly builds up in the focal region, although the 
relative amplitude of the harmonics is reduced.  This 
and other experimental/numerical studies indicate that 
although the very high frequencies may not be 
generated in tissue, significant generation of lower 
harmonics can occur. 
   The finite difference models are not limited to cases 
with axial symmetry, although full 3-D models do take 
significantly longer to run.  This is illustrated in Figure 
6 which shows the field of a square transducer, of side 
20 mm, driven at 3.5 MHz. The field is shown in a 
plane that is defined by the normal to the transducer 
and the face diagonal.  The predicted levels of the 
fundamental, second harmonic and tenth harmonic are 
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shown.  The high level of harmonic build up off-axis 
before the last axial maiximum should be noted. 
 

(a) (b) (c)(a) (b) (c)

 
Figure 6. Field component amplitudes in plane through 
the diagonal of a square transducer (side length = 20 

mm).  The beam propagates down the page for 
200mm.  (a) Fundamental (2.5 MHz), (b) second 

harmonic and  (c) tenth harmonic.  Model predictions. 
 

Implications of Non-linear Propagation 
   Non-linear propagation has a number of implications 
for the field of medical ultrasonics, some of which are 
of significance to other fields.  Firstly the generation of 
harmonics, which may extend to many times the 
fundamental frequency, makes the calibration of 
medical ultrasound systems more difficult.  When 
making calibration measurements in water it is 
necessary to have a hydrophone (receiver) and 
receiving system capable of responding to the wide 
range of harmonic frequencies that are present.  The 
accurate reproduction of waveforms is especially 
difficult because of the phase response of the 
hydrophone. 
    Secondly, the generation of higher harmonics, which 
are preferentially attenuated because of the increase 
in attenuation with frequency, can result in an 
enhanced loss of energy from the beam over that 
expected on the basis of linear propagation.  This 
enhanced attenuation can lead to saturation, enhanced 
streaming and enhanced heating.  In the last case the 
temperature rise generated by ultrasonic absorption 
may exceed that predicted on the basis of linear 
acoustics.  
   Thirdly, the non-linear propagation complicates the 
consideration of safety indices and safety limits for 
medical ultrasound systems.  Reference 
measurements made in water may be subject to non-
linear effects, such as enhanced attenuation, that do 

not occur to the same extent as in tissue.  It should be 
noted that although the attenuation of tissue can 
significantly reduce the generation of higher harmonics 
the non-linear distortion in tissue can still be significant. 
 
Tissue Harmonic Imaging 
   The non-linear propagation of ultrasound can also be 
used to advantage in imaging situations.  Consider the 
characteristics of the second harmonic generated by 
non-linear propagation.  It has a narrower beam cross-
section than that of the fundamental transmitted by the 
transducer and lower sidelobe levels (see Figure 7).  
In principle it is possible to filter out the harmonic 
generated in the propagation medium from the 
fundamental transmitted.  (In order to ensure that the 
harmonic is generated in the medium it is necessary to 
keep the transmitted harmonic to a minimum.)  These 
factors give the use of the second harmonic some 
potential advantages for imaging. 
 

 
Figure 7.  Theoretical normalised beam cross-sections 
in tissue for a 3.0 MHz array (15 mm by 10 mm), with 
a single focal length of 50 mm.  The calculations were 
performed for a source pressure of 1.0 MPa and show 

the cross-section in the focal plane. 
 
  The possible use of harmonics for imaging has been 
suggested by a number of authors including Muir [10] 
and Bjørnø and Lewin [11], and the generation of 
harmonics can be used to improve resolution in 
acoustic microscopy.  The possibility of using the 
technique for medical imaging was demonstrated by 
Ward et al. [12,13] and is described in references [14] 
and [15]. 
    Commercial manufacturers initially produced 
systems with very wide bandwidth transducers, 
capable of imaging the second harmonic, in order to 
detect the harmonic generated by contrast agents 
oscillating non-linearly.  It was then observed that 
these scanners were capable of imaging without a 
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contrast agent present and such harmonic imaging 
systems are now being produced by a number of 
manufacturers.  They typically use very wideband 
transducers transmitting, for example, 2 MHz and 
forming an image using the received energy at 4 MHz.  
These systems can give significantly improved images, 
particularly in "hard to image" patients, where they 
appear to be able to reduce the amount of clutter 
present in images. 
  Ward et al. demonstrated the potential of harmonic 
imaging using a laboratory system consisting of a 
focused transmitter and receiver, where the receiver 
consisted of a large area PVdF membrane hydrophone 
in order to give the required frequency response on 
reception [12,13].  In this case the system had a 
fundamental of 2.25 MHz and a focal length of 
262mm.  The system was used to image an array of 
nylon lines immersed in water using both the 
fundamental and water generated second harmonic.  
The images showed the potential improvement that 
can be obtained (Figure 8). 
 

 
 
Figure 8. Reflected signal images of an array of nylon 

lines in water for the fundamental (top) and second 
harmonic (bottom). Dimensions in mm. 

 
   It is interesting to consider the reasons why 
harmonic imaging gives rise to the improved image 
quality observed in vivo.  The reasons may vary, but 
the following factors are all potentially significant: 
 
Narrower main lobe beam width  
   The reduced second harmonic beam width can lead 
to improved lateral resolution.  Of course a narrower 
beam could be obtained by direct transmission of the 
second harmonic from the transducer.  The essential 
point here is that in an attenuating medium, in which 
the attenuation increases with frequency, it can be as 
efficient to generate the second harmonic remotely 
using non-linear propagation as to transmit it directly. 
 

Reduced side lobe level 
    The performance of imaging systems is often 
limited by scattering from structures that are outside 
the main beam of the transducer. These unwanted 
signals, known as reverberation, arrive at the same 
time as the main echo and can not be resolved in time.  
Consequently they make it harder to distinguish the 
real structures being imaged.  As the amplitude of the 
reverberation will depend on the transducer’s side lobe 
level, the relative level of the side lobes is of particular 
significance.  Figure 7 clearly shows the reduced 
sidelobe level that is obtained for the second harmonic 
using a realistic array geometry. 
    Although array technology and apodisation can be 
used to reduce these side lobe levels in the scan plane 
of diagnostic scanners it is much harder to reduce 
them in the transverse plane.  It is probably the 
reduction of sidelobe scatter from these out of plane 
scatterers that is one of the major advantages of 
harmonic imaging.  It is interesting to note that the 
introduction of 1.5D and 2D arrays, with the potential 
of apodisation in both planes, may reduce some of the 
advantages of harmonic imaging. 
 
Reduced aberration due to body wall 
inhomogenities 
   When imaging through surface layers inhomogenities 
in the body wall may reduce the coherence of the 
transmitted wave and distort the beam generated by 
the transducer array.  In particular this may result in 
an increase in the sidelobe level.  The use of a lower 
primary frequency with longer wavelength reduces the 
influence of these inhomogenities, while the 
subsequent harmonic generation enables the resolution 
to be maintained.  This has been investigated in 
reference [14]. 
 
Reduced reverberation in surface layers 
   Multiple reflections from the layers within the body 
wall near to the transducer can give rise to secondary 
pulses that follow the main transmission.  In normal 
imaging these can not be distinguished and give rise to 
additional clutter in the image.  When using harmonic 
imaging these lower amplitude trailing pulses do not 
result in significant harmonic generation and can be 
simply filtered out, reducing the reverberation present. 
 
Pulse Inversion Harmonic Imaging 
  One of the potential difficulties with harmonic 
imaging in practice is the filtering out of the second 
harmonic components from the fundamental 
components.  This is especially true for the short 
pulses used in imaging as the transmitted pulse may 
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have a wide frequency spread with significant 
frequency content at twice the centre frequency.   
  One approach to this problem is use “pulse inversion 
imaging”.  This involves transmitting two pulses along 
each scan line, with the second pulse an inverted copy 
of the first.  The resultant echoes are then added 
together.  If the propagation were linear the echoes 
for the second pulse would be the inverse of the first, 
so the addition would give zero output.  In this way the 
effect of the ‘fundamental’ transmitted from the 
transducer can be cancelled out.  The non-linear 
propagation of two pulses will, however, produce 
second harmonic components that are approximately 
in phase. Hence the addition of the two echoes will 
result in the summation of the non-linearly generated 
second harmonic components. 
  In this way the non-linearly generated second 
harmonic can be enhanced relative to the transmitted 
(fundamental) signals. Of course, this process is 
complicated by non-linear propagation, especially for 
short pulses.  This can be illustrated by numerical 
calculations for a model system. 
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Figure 9.  Initial waveforms used for pulse inversion 

simulation. 
 

 
  Figure 9 shows the two initial short pulses based on a 
2.0 MHz sine wave that will be considered.  These 
pulses will be referred to as ‘positive’ and ‘negative’. 
The transducer is assumed to be square with 
dimensions of 10 mm x 10 mm with focal lengths of 50 
mm in both planes.  The resulting distorted waveforms 
in the focal plane are shown in Figure 10.  Quite 
clearly these are not the exact inverse of each other, 
showing the complexity of non-linear propagation for 
short pulses.   
  In Figure 10 the sum of the two waveforms is also 
plotted.  This can be considered to be the effective 
pulse that is used in this imaging mode.  It can be seen 
that the fundamental frequency of the sum waveform 
is basically twice that of the original signal.  This is 

evident from Figure 11, which shows the spectra of 
the positive, negative and sum waveforms.  These 
show how the second harmonic is enhanced for the 
sum signal while the primary frequency is reduced.  
Of course, the non-linear nature of the propagation 
results in the positive and negative pulse spectra not 
being the same at low frequencies; hence the 
cancellation is not complete in this region. 
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Figure 10.  Positive, negative and sum waveforms on 

axis in the focal plane (50 mm). 
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 Figure 11.  Positive, negative and sum spectra on axis 
in the focal plane for propagation through water. 

 
  The resulting beam cross-sections for the positive 
pulse and the effective sum pulse are shown in 
Figure 12.  This shows how the narrower beam and 
lower relative side lobe levels are retained for the 
second harmonic for the sum signal, while the 
fundamental signal is reduced by 20 dB in the 
inversion mode. 
  This is also illustrated in Figure 13, which shows the 
amplitude of the effective wavefield components in the 
(x, z) plane through the acoustic axis.  (The transducer 
is on the left and the acoustic axis along the top of 
each plot.)   In the 2 MHz (fundamental) image for the 
positive pulse (a) the side lobes are clearly visible 
while the whole field in significantly reduced for the 
sum pulse (c).  The 4MHz images (b) and (d) show 
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the build up with distance z of the harmonic, its 
narrower beam and significantly lower side lobe levels. 
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Figure 12.  Beam cross-sections in the focal plane for 
positive pulse at 2.0 MHz (H1 Positive) and 4.0 MHz 

(H2 Positive), and sum of pulses at 2.0 MHz  
(H1 Sum) and 4.0 MHz (H2 Sum). 

 
 
 (a) 

 
(b) 

 
(c) 

 
(d) 

 
 
Figure 13.  Beam component amplitude plots in the (y, 
z) plane;  (a) positive pulse 2.0 MHz, (b) positive pulse 

a 4.0 MHz, (c) sum pulse 2.0 MHz and  
(d) sum pulse 4.0 MHz. 

 
Conclusions  
   Our understanding of non-linear propagation in 
ultrasonic beams has grown considerably in recent 

years.  This has been aided by the development of 
wideband hydrophones and numerical models; the 
latter are now able to predict accurately the behaviour 
of such fields, provided that the initial transducer 
behaviour and material properties are known 
sufficiently accurately.  There is, however, still a need 
for more efficient algorithms and for simpler models to 
be able to predict the effects of non-linearity in a given 
field.  Tissue harmonic imaging has developed to 
exploit this non-linear propagation and continues to 
develop with new systems being designed to obtain 
optimal results.  Developments include the use of 
improved filtering techniques and the use of pulse 
inversion techniques to improve the rejection of the 
fundamental component from the signals used to form 
the image.  As such, it is probable that harmonic 
imaging still has considerable potential for 
improvement.  Non-linear propagation also 
complicates the measurement of ultrasonic fields and 
has implications for measurement standards. 
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